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We study a rental system where a fixed number of heterogeneous users rent one product at a time from a collection of
reusable products. The online DVD rental firm Netflix provides the motivation. We assume that rental durations of each
user are independent and identically distributed with finite mean. We study transient behavior in this system following the
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users increases without bound, via appropriate versions of Glivenko-Cantelli and Donsker’s theorems. Analyzing the usage
process, we demonstrate that an increase in the variability of the rental duration distribution can actually help the firm by
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not imposing any deadlines for the return of the product.
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1. Introduction
This paper is motivated by the online DVD rental busi-
ness: Netflix is the established incumbent, with Blockbuster
making a recent foray into this space. There are several
special features of this business from an operational per-
spective. First, the firms serve a closed population of pos-
sibly heterogeneous customers. Second, the firm limits the
number of DVDs that a customer can have at any given
time. In Netflix, this “max-out” number varies from one
to four. Third, each customer provides a preference list.
On the return of a DVD, the firm sends out the available
DVD that is highest on the preference list. It is reasonable
to assume that the firm has sufficient variety and quantity
of “classic” movies to ensure that there is always an avail-
able DVD that can be sent out when a customer returns a
previous rental. Finally, it is also reasonable to assume that
no customer wants to see the same movies more than once.
The key aspect of this system is the dynamics of usage

following the introduction of a new “hot” release: Analyz-
ing steady-state behavior, assuming that all rental units are
substitutes is moot. Demand for this new release is neces-
sarily transient: Everyone watches a movie once, and even-
tually everyone has seen the movie. The transient process
that we study is the usage process. For us, usage is the

number of copies of the new release that are with customers
at any given time, assuming that there are sufficient copies
of the new release. Of course, it suffices to have as many
copies as there are customers. To study usage, we need
to keep track of returns of old movies by customers who
have not yet seen the new release, which constitutes the
request process for the new release, as well as returns of
copies of the new movie. Depending on the relationship
between these two components, it could very well be that
peak usage is much smaller than the number of customers.
Thus, analyzing the usage process allows us to decide on
the number of copies to stock in order to ensure a given
quality of service, as measured by stockout probabilities
or fill rates. Getting insights on the behavior of the usage
process, its dependence on the rental behavior of the cus-
tomers, and its impact on stocking decisions, is the focus
of this paper.
We model the firm as having a fixed population of n cus-

tomers, all of whom desire the hot new product (movie).
(In Netflix, customers are encouraged to reveal their desire
to see a new release via their preference list before the
actual release. As a result, it is easy to identify the popu-
lation who wishes to see the movie, and ignore all others.)
The customers differ with respect to their rental duration
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distribution. We assume that each customer is of type �
(taking values in a finite set �) with probability p�, and
a customer of type � has a rental duration distribution F�.
For simplicity, we assume that a customer is allowed to
rent exactly one product at a time, and holds each such
rental for a random amount of time distributed accord-
ing to her F�. Upon returning the product, the customer
immediately requests another product. We assume that the
customer can always obtain a product that she has not
previously rented. The complete model description is in §2.
We assume that the system has achieved stationarity

when the new movie is introduced. At any fixed n, ana-
lyzing the usage process does not provide the structural
insights we seek. Moreover, in applications like Netflix,
n is typically very large. Therefore, we analyze usage in
the asymptotic regime when the number of customers n
increases without bound. (This asymptotic regime is akin to
the multiserver limit in Halfin and Whitt 1981.) We obtain
a deterministic functional law-of-large-numbers limit, the
fluid limit. This limit depends not just on the first moment,
but on the entire distribution F� for all � ∈ �. This fluid
limit characterizes usage on O�n� scale. We provide a
refinement of this limit on the O�

√
n� scale, obtaining a

Gaussian process as a limit.
Most of the literature that analyzes multiserver limit-

ing regimes considers either Markovian assumptions on the
underlying distributions using an exponential (as in Halfin
and Whitt 1981) or phase-type distribution (Puhalskii and
Reiman 2000, Whitt 2005). Some exceptions to this are
Krichagina and Puhalskii (1997), Armony et al. (2009),
Whitt (2006), Glynn and Whitt (1991), and Reed (2007).
The asymptotic limits in these systems are measure-valued
processes or their functionals. Our work is in the spirit
of these papers. The single-server system analyzed in
processor-sharing settings in Gromoll et al. (2002) also
falls into this category. Our work differs from the afore-
mentioned papers in the method used to derive the asymp-
totic limits. Most of these papers utilize some form of
empirical process theory for the analysis. A recent paper,
Gromoll et al. (2008), uses the Glivenko-Cantelli theorem
to obtain asymptotic limits for the stochastic primitives
in their model, which they use to characterize fluid lim-
its in processor-sharing queues. However, in this paper we
exploit the special structure in our problem to translate the
underlying queueing model into an empirical process asso-
ciated with sampling n two-dimensional random variables.
An application of the appropriate Glivenko-Cantelli and
Donsker theorems from van der Vaart (2000) then allows
us to completely characterize the limiting O�n� and O�

√
n�

processes. This is similar in spirit to Glynn and Whitt
(1991), where the authors exploit the special structure in
their system to derive elegant approximations with relative
ease; the authors compute the asymptotic limits for an infi-
nite server queue using the fact that the queue length for a
system with deterministic service times can be easily writ-
ten out as a function of the arrival counting process.

Having obtained the asymptotic behavior of usage, we
turn our attention to stocking. On the dominant O�n� scale,
the quantity that matters for stocking is b∗, the maximum
value that the fluid limit of usage attains (see §5). For the
case of a homogeneous customer pool with an exponen-
tial F�, we show that b∗ = 1/e. This result implies that the
firm can provide excellent quality of service while stocking
around 38% of the total demand. This result also illus-
trates the multiplexing benefit from random returns of pre-
vious rentals, and represents a result that could not have
been obtained using a static analysis. We characterize the
“best” distribution for a given mean that allows b∗ to be
made arbitrarily small; it turns out that this distribution
has an arbitrarily high variance. We also study the impact
of imposing return deadlines. Under the assumption that
deadlines imposed are identical for all products, we show
that b∗ is decreasing in the deadline. Thus, it is preferable
not to impose deadlines. The peak usage b∗ is not monotone
in the mean of the demand distribution, and so we need
to use the entire dynamics of the usage process to arrive
at this conclusion. In passing, we note that it is possible
to envisage other implementations of deadlines where they
might prove beneficial. For example, the firm may impose
deadlines only for “hot” products. We do not study such
settings in this paper.
When the firm wants to stock so as to achieve a desired

stockout probability, the O�
√

n� correction comes into play.
Although the limit “correction” process obtained is not
very tractable, we show that only the distribution of this
process at the deterministic times where the fluid limit is
maximized matters. This makes the stocking decision more
tractable. We provide an estimate of the stock level required
to meet a given stockout probability that is accurate to a
resolution of O�

√
n�. Finally, Netflix uses a “comparable

DVD” model where the user is assumed to be indifferent
between several “hot” releases. Using this additional flexi-
bility allows the firm to lower stock levels. We study this
benefit under the simplifying assumption that all the sub-
stitutes are simultaneously released in §6.
To the best of our knowledge, this paper is the first to

provide an analysis of the Netflix model. A recent paper,
Randhawa and Kumar (2008), does consider a similar set-
ting. However, it builds an On-Off source-based model for
customers subscribing to a rental service and studies the
firm’s decision to offer a pay-per-use or subscription con-
tract. The video rental industry in general has been the sub-
ject of a lot of interesting research. For example, Mortimer
(2008) utilizes data collected at a large number (6,137)
of video rental stores in the United States between 1998
and 2000 to compare the stocking levels, rental prices, etc.
A regression analysis is performed to examine the effect
of a revenue-sharing scheme on the retailer’s profit. The
analysis shows that the revenue-sharing scheme has a small
positive effect on the retailer’s profit for popular titles, and
a small negative effect for less-popular titles. Tang and Deo
(2008) study the competition between retailers on rental
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price and rental duration instead of product availability.
Kiesmüller and van der Lann (2001) studies dependency
between the demand and return processes for the case of
managing the inventory of a single type of a reusable
product; purchasing lead time is also modeled. This paper
demonstrates the extent of error incurred by neglecting the
dependency between return process and the demand.

1.1. Notation

All random elements in this paper are defined on the prob-
ability space ��� ��. Further, we assume all stochastic
processes lie in the space of functions that are right contin-
uous and possess left limits. For a collection of probability
measures Pn and P defined on �S� �, where S is a general
metric space and � is its Borel �-field, we say that as n→
�, Pn ⇒ P , i.e., Pn weakly converges to P , if and only if∫

S
f dPn → ∫

S
f dP for all bounded, continuous real-valued

functions f on S. Further, if Xn and X are random elements
of this space such that Pn and P are the probability mea-
sures associated with Xn and X, respectively, then Xn ⇒X
if and only if Pn ⇒ P .
For functions f  g� � → �, we shall say that

f �n�=O�g�n�� if there exist constants C1C2 > 0 such
that C1 � f �n�/g�n� � C2 for all n. Further, we shall say
that f �n�= o�g�n�� if limn→��f �n�/g�n��= 0.

2. Model

2.1. Setup and Assumptions

We begin by considering a system with n customers,
indexed by i = 1 � � �  n. We assume that customer i is of
type � ∈ � with probability p�, where � is a finite set.
We use �i to denote the type of customer i. We associate
each customer type � ∈ � with a rental duration distribu-
tion F� that has support on �+, finite mean, and does not
charge the origin, i.e., F��0� = 0. Let m� denote the mean
of the distribution F�. As described in the introduction, in
our model customers always have one product with them
at any given time, asking for the next product upon the
return of the previous rental. Even when they do not get
their preferred product, we assume that they are given some
product to rent, a perfectly reasonable assumption in sys-
tems like Netflix. Customer i holds onto her jth rental for
a random time vij . We assume that �vij�

�
j=1 is a sequence of

independent and identically distributed random variables,
distributed according to the cumulative distribution func-
tion F�i

. In particular, the rental durations do not depend
on the product being rented. We assume that the initial
rental duration vi0 is a random variable that is independent
of vij for j = 12 � � � � We will discuss the distribution of
vi0 shortly. The rental times are assumed to be independent
across customers.
At any given time t, the residual time Ri�t� of customer i

represents the remaining time left on her current rental.
Because she obtains the next product only on the return of

her current rental, her request for the next product occurs
at time t + Ri�t�. Let Ni�t� denote the counting process
that counts the number of products rented by customer i
by time t. That is, Ni�t�= sup�j�

∑j
k=0 vik � t�, where we

use the convention that
∑j

k=0 vik = 0 for j < 0. Let Ti�&�
denote the time instant at which the &th rental of customer i
began, i.e., Ti�&�=

∑&−1
j=0 vij . We can write out customer i’s

residual rental time as

Ri�t�= viNi�t�
+ Ti�Ni�t��− t�

Now, suppose that at some arbitrary time T the new
product is introduced. We assume that each customer wants
the new product upon returning the product she is currently
renting. As described in the introduction, we are interested
in the dynamics of usage of this new product: The preced-
ing assumption makes the analysis convenient by simply
allowing us to ignore those people who do not wish to rent
the new product. If the new product is available, it is given
to the customer; otherwise, the customer rents an old prod-
uct, which is defined to be any product other than the new
one, and requests the new product again upon returning the
old product. As mentioned earlier, customer i rents the new
product for a duration that is identical in distribution to that
of the old product. We further assume that the rental dura-
tion of the product the customer is renting when the new
product is introduced is not affected by the introduction of
the new product. Finally, we assume that customers do not
rent the new product more than once.
The following result, which follows from §§2–16 in

Wolff (1989), states the connection between the (stationary)
residual rental time of customers and the excess distribu-
tion of F�. This allows us to make a convenient assumption
that frees our analysis from dependence on the introduction
time T .

Proposition 1. For each customer i, i = 1 � � �  n and
x � 0, we have:
1. (Stationarity). If ��vi0 > x � �i = �� =

�1/m��
∫ �

x
(1 − F��s�*ds, then ��Ri�t� > x � �i = �� =

�1/m��
∫ �

x
(1− F��s�*ds for all t > 0.

2. (Steady state, time average). If vi0 has a finite mean,
we obtain

lim
t→�

∫ t

0 ��Ri�s�>x ��i=��ds

t
=

∫ �
x

(1−F��s�*ds

m�

and (1)

lim
t→�

∫ t

0 ��Ri�s�>x�ds

t
=∑

�∈�

p�

∫ �
x

(1−F��s�*ds

m�

� (2)

3. (Steady state). If vi0 has a finite mean and F� is non-
lattice for � ∈�, then we obtain

lim
t→���Ri�t�>x ��i=��= 1

m�

∫ �

x
(1−F��s�*ds and (3)

lim
t→���Ri�t�>x�=∑

�∈�

p�

∫ �
x

(1−F��s�*ds

m�

� (4)
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Note that (2) and (4) follow from (1) and (3) by taking
an expectation on the customer type.
For any finite introduction time T , the behavior of the

system will depend on T . In contexts such as Netflix, it is
reasonable to assume that T is very large, i.e., the system
has been operating for a long time when the new product
is introduced, and in this case the dependence on the actual
value of T can be ignored because the system is close to
steady state. The proposition above justifies making the fol-
lowing assumption that conveniently allows us to ignore
the actual value of T . We assume that vi0 is distributed
according to the excess distribution of F�i

given by F�ie
≡

�
∫ x

0 (1−F�i
�s�*ds�/m�i

. Then, using Proposition 1, we con-
clude that the residual rental duration for the customers is
an i.i.d. sequence Ri�T � that is independent of the time of
introduction T , and thus can be denoted Ri�T �

d=Ri, where
Ri has the distribution F�ie

. In addition, the duration of cus-
tomer i’s rental of the new product has the same distribution
as vi1. We shall henceforth use Vi to denote customer i’s
rental duration of the new product. Because the introduc-
tion time T becomes redundant for our analysis, we simply
drop it from our notation. Finally, we note in passing that
stationarity is different from steady state for the case when
F� is a lattice distribution for any type �—that is, there
exists a d such that

∑�
k=1 ��vi1 = kd � �i = �� = 1. How-

ever, a Cesaro limit as in part 2 of the result holds, and we
could use this as a proxy for the steady state. In any case,
the process defined via our choice of vi0 is guaranteed to
be stationary.

2.2. Dynamics of Usage

Suppose that the system manager stocks n units of the new
product. Of course, this guarantees that no request for the
new product will be denied. However, because the products
are reusable, we expect the actual usage to be below n. That
is, stocking n units is unnecessarily conservative. However,
this will be the first step in our analysis. By quantifying the
unconstrained dynamics of usage, we will be able to esti-
mate the peak usage, and this provides a useful connection
between rental distributions and stocking decisions.
Recall from the last subsection that the set of indepen-

dent random pairs �RiVi�
n
i=1 represents the request times

and rental durations for the new product. These random
variables will be used to write out the usage process U n�t�
that tracks the number of units of the new product rented
out at time t, where t measures time beyond the arbitrary
time of introduction. (Note that the superscript n indicates
the fact that there are n customers and n copies stocked.)
It is worth pointing out that this usage process eventu-
ally gets absorbed at zero because each customer rents
the product at most once, i.e., we have U n�0� = 0 and
limt→� U n�t� = 0, and it is the dynamics of U n�t� over
t ∈ �0�� in which we are interested. Figure 1 illustrates
a sample path of the usage process. At any given time t,
the customers who have a unit of the new product must

Figure 1. The usage process.

Un (t)

Ri

Rj

Rk

Vi

t

have (i) returned their previous rental by t, i.e., have Ri � t;
(ii) must not have returned the new rental, i.e., have Ri +
Vi > t. Those that have Ri + Vi � t have returned the new
rental and therefore no longer contribute to the usage; those
with Ri > t will only contribute to usage at some future
time beyond t. Formally,

U n�t�=
n∑

i=1
��Ri � t and Ri +Vi > t� (5)

where ��A� is the indicator function of the event A.
We shall use a different interpretation of the usage pro-

cess for our analysis. We can think of �RiVi�
n
i=1 as being n

i.i.d. draws from the distribution

��r v�= ∑
�∈�

p�F�e�r�F��v��

Consider the empirical distribution corresponding to � con-
structed from the realization �RiVi�

n
i=1. Figure 2 provides a

graphical representation of this empirical distribution, with
each atom denoting a customer with her residual time and
rental duration. Then, according to (5), the number of atoms
in the shaded region denotes U n�t�. Note that based on this

Figure 2. An alternate representation.

Vi

Ri
t

t
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representation, U n�t� is distributed as a binomial random
variable for each t � 0 with n trials and probability of suc-
cess ��Ri � tRi + Vi > t�, and thus one can analyze the
mean behavior ƐU n�t�= n��Ri � tRi +Vi > t� with ease.
However, the knowledge of this distribution at any fixed t
gives no indication of the temporal behavior, and in par-
ticular, the peak of the usage process. This motivates us to
consider asymptotic methods and analyze the system with
a large number of customers. This is the natural asymp-
totic regime in applications like Netflix. In this setting, the
simplicity of the representation in (5) allows us to invoke
results from empirical process theory to obtain the limiting
processes. Further, by characterizing the distribution of the
usage process, we are able to obtain structural insights that
will serve useful in computing stocking levels (see §5).

3. Asymptotic Analysis
As discussed above, we study asymptotic behavior of
the system when the number of customers n grows
without bound. (This limiting regime is akin to the
Halfin-Whitt multiserver asymptotic regime.) As before,
let � denote the probability measure associated with
�RiVi�. Then, U n�·�/n given by (5) is an empirical
process associated with Ɛ��Ri � ·Ri +Vi > ·� defined on
�D(0��d�, where d is the metric as in §3.5 of Ethier
and Kurtz (1986), which induces the Skorohod topol-
ogy. Defining u�t� ≡ Ɛ��Ri � tRi + Vi > t� = ��Ri � t
Ri + Vi > t� for t � 0, we can now apply the appropriate
versions of the Glivenko-Cantelli and Donsker theorems
(cf. Chapter 19 in van der Vaart 2000) to obtain the fol-
lowing asymptotic characterization of the usage process.

Theorem 1. As n→�, we have
1. (Glivenko-Cantelli)

sup
t�0

∣∣∣∣U n�t�

n
− u�t�

∣∣∣∣→ 0 a.s. (6)

2. (Donsker)

√
n

(
U n�·�

n
− u�·�

)
⇒ W�·� (7)

where W�·� is a continuous, zero-mean Gaussian process
with covariance function 2�s t�= ��R1 � s ∧ tR1+V1 >
s ∨ t�− u�s�u�t�.

These results hold for both discrete and continuous
rental duration distributions. We postpone all proofs to the
appendix.
The process u�·� characterizes the fraction of customers

renting the new product as a function of time in a large
system, and in this sense describes the usage of the prod-
uct asymptotically. Note that if we were to fix any t > 0,
the asymptotic properties of U n�t�/n can be calculated by
a direct application of the strong law of large numbers

and the central limit theorem. However, this pointwise con-
vergence does not characterize the process sufficiently to
identify the peak of the usage process. To do this, establish-
ing process-level convergence as in Theorem 1 is essential.
Using this convergence, we show in Corollary 1 below that
the peak of the usage process is asymptotically equal to the
peak of the process u�·�, b∗, defined as follows:

b∗ ≡ sup
t�0

��Ri � tRi +Vi > t�

= sup
t�0

∑
�∈�

p���Ri � tRi +Vi > t � �i = ��

�a�= sup
t�0

∑
�∈�

p�

∫ t

0
��Vi > t − s�dF�e�s�

= sup
t�0

∑
�∈�

p�

∫ t

0 �1− F��s���1− F��t − s��ds

m�



(8)

where (a) follows by the distribution function of Ri when
�i = � is given by F�e. Now, taking the supremum over
�t � 0� in (6)–(7) and arguing the interchange of the limit
and the supremum function, we obtain the following result,
which characterizes the peak of the usage process. (This is
proved in the appendix.)

Corollary 1. As n→�, we have
1. supt�0�U

n�t�/n�→ b∗, a.s.
2.

√
n�supt�0�U

n�t�/n�−b∗�⇒ sups∈S W�s�, where S =
�t� u�t�= b∗�.

This result implies that for large n, the peak of the usage
process can be loosely written as

sup
t�0

U n�t�= b∗n+ sup
s∈S

W�s�
√

n+O�
√

n��

Thus, for large n, the peak of the usage process will be
governed by the term b∗, which in turn is the peak of the
mean usage process u�·�. Before proceeding, we illustrate
the behavior of u�·� via numerical examples.
Figures 3 and 4 plot the mean usage process u�·� for a

homogeneous population with rental durations distributed
according to a unit mean exponential distribution and a

Figure 3. u�·�: Exponential rental distribution.
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Figure 4. u�·�: Uniform (01* rental distribution.
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uniform distribution over (01*, respectively. It is possible
to have rental distributions that are not as well-behaved as
the ones in these figures. Namely, u�·� is not always uni-
modal. One can have rental distributions for which u�·� has
multiple local maximas or achieves its maximum over an
interval. The behavior of u�·� depends on the entire distri-
bution of the rental duration, and not on the first or second
moment alone. This motivates the study of the relationship
between the rental duration distributions F� and the peak
of the mean usage process, b∗. As the reader might guess,
b∗ is a crucial component of any stocking decision (we dis-
cuss this connection in §5).

4. Peak Mean Usage and
Rental Distributions

Our aim in this section is to use the asymptotic analysis
of the previous section to develop some structural insights
about b∗. First, we shall characterize the ideal customer
population. To be precise, we will try to find the dura-
tion distribution with a given mean that has the lowest b∗.
Unlike traditional inventory management problems, it is not
true that the deterministic distribution is ideal. In fact, this
distribution turns out to be the worst (see Proposition 2).
Section 4.1 shows that there is an ideal customer population
in a limiting sense—that is, b∗ can be made arbitrarily small
for any given mean. In §4.2, we demonstrate the invari-
ance property of the exponential distribution with respect
to b∗, namely, b∗ = e−1 regardless of the mean rental dura-
tion. Next, in §4.3, we investigate the impact of imposing
rental deadlines on the peak usage. We show that the longer
(i.e., more relaxed) the deadlines, the lower the b∗. Finally,
in §4.4, we show that approximating a heterogeneous cus-
tomer population by an equivalent homogeneous one can
lead to an arbitrarily large error.

4.1. The Ideal Customer Population

In this subsection, we assume all customers to be homoge-
nous, i.e., F� = F for all � ∈ �. Our aim is to perform a
best- and worst-case analysis of b∗ over rental distributions

that have a given mean. It is useful to define some notation
first. Denote the set of all distributions with mean m > 0
by �m, and for any rental time distribution F ∈�m, denote
the peak of mean usage by b∗

F . Equation (8) implies that
b∗

F � 1 for all rental distributions and for a deterministic
distribution with any mean m, the corresponding b∗ = 1.
Thus, we obtain the following result that we state without
proof.

Proposition 2 (Worst Rental Distribution). A deter-
ministic rental distribution F �x� = 1�x�m� has the largest
b∗

F , namely, unity.

We now characterize the best rental distribution.

Proposition 3 (Ideal Rental Distribution). 1. For any
4 ∈ �0m�, the rental distribution F4 ∈�m given by

F4�x�=


0 x < 4

1− 4 4 � x < m/4+ 4− 1
1 otherwise

(9)

has b∗
F4
=O�4�. Further, the second moment∫ �

0
x2 dF4�x�=O�1/4��

2� infF ∈�m
b∗

F = 0.
Proposition 3 shows that it is possible to make b∗ to be

O�4� for any 4 > 0. That is, it is possible to get distribu-
tions that are arbitrarily good, even though there is no sin-
gle “best” rental distribution or ideal population. The way
in which b∗ is made small results in the variance of the dis-
tribution becoming arbitrarily large. Although it is usually
true in stochastic systems that increasing variance degrades
performance, in this special case, the opposite is true in our
system. The prescriptive implications of this result are not
immediately apparent for a firm like Netflix: Inducing such
rental behavior among rational customers appears to be an
interesting topic for future work.
An intuitive explanation of this result is as follows. The

Inspection Paradox (cf. §§2–4, Wolff 1989) tells us that
at the time of introduction of the new product, customers
(who have distribution F4) are disproportionately likely to
be in their longer rental duration, which is of size O�1/4�,
and therefore the residual time of the customers will be
uniformly spread over an interval of size O�1/4�. That is,
requests for the new product come evenly spread over a
long interval. However, on receiving the new product cus-
tomers are more likely to return the product within O�4�.
This combination of spread-out requests followed by quick
returns results in a unit of the new product being reused
O�1/4� times, and therefore u�·� does not get above a level
that is O�4�.

4.2. The Exponential Distribution: b∗ = e−1

It is easy to see that the peak usage level is independent
of any time scaling, i.e., supt�0U

n�t� = supt�0U
n�2t� for
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any 2 > 0. We illustrate the asymptotic version of this inde-
pendence for the case of exponential distributions. Because
a rescaled exponential distribution is also exponential, this
leads us to the following mean invariance result.

Proposition 4. For a homogeneous population with expo-
nential rental distributions, i.e., F �x�= 1−e−x/m for x � 0,
we have b∗ = e−1 for any m > 0.

This result, when combined with Proposition 3, allows
us to also conclude that b∗ is not monotone in the mean m.
In particular, given a mean m, one can find a two-point
distribution that has b∗ smaller than e−1. Of course, the
deterministic distribution with the same m has b∗ = 1. Fur-
thermore, u�·� constructed for the uniform distribution in
Figure 4 allows us to show that b∗ is not monotone in
the second moment either because we get b∗ = e−1 for the
exponential distribution regardless of its variance.

4.3. Effect of Deadlines: Longer Deadlines
Imply Lower b∗

It is common for most rental firms to impose deadlines
on customer rentals. A firm wanting to increase reuse may
choose to impose return deadlines to ensure that a unit
of the desired new product is not kept by a user for a
long time. On the flip side, imposing deadlines makes sure
that the customers return old products quicker as well, and
therefore end up asking for the new product earlier than
they might have without deadlines. It is not a priori clear
which way this trade-off is resolved with regard to b∗.
Netflix chooses not to impose any deadlines on its cus-
tomers. This could be for various reasons, such as strate-
gic differentiation from their main competitor Blockbuster,
or to ensure that the mean rental time is not reduced, result-
ing in higher postage and other transaction costs per unit
time. The question we address is whether these benefits of
not imposing deadlines could be offset by higher stocking
costs resulting from a higher b∗.
To do so, we first need a model of how customers react

to deadlines. We assume that the firm imposes a deadline d
on all rentals and all customers always return the prod-
uct before (or at) the deadline. As before, we assume that
each customer has an underlying rental distribution F� from
which the amount of time the customer wishes to rent is
drawn. This time can be thought of as the customer’s rental
duration when there are no deadlines. When a deadline of
d is imposed, the customer will only rent for a duration that
is the minimum of her wished rental time and the deadline
duration d. Thus, in our model, the cumulative distribution
of the rental time with a deadline of d is given by

F d
� �x�=

{
F��x� x < d

1 x � d�

Denoting the peak of mean usage by b∗
d, we obtain

b∗
d = sup

0�t�2d

∑
�∈�

p�

∫ t

0 �1− F d
� �s���1− F d

� �t − s�ds�∫ d

0 �1− F d
� �s��ds

� (10)

Then, under our proposed model of deadlines, we have the
following result.

Proposition 5. The peak of the mean usage decreases as
the imposed deadline becomes more relaxed, i.e., b∗

d is
decreasing in d.

The mean of the distribution F d
� is increasing in d. How-

ever, given the conclusion from the previous subsection that
b∗ is not monotone in the mean, this is not sufficient to con-
clude that b∗ is decreasing with d. Proposition 5 could not
have been obtained without considering the actual dynam-
ics of u�·�. Indeed, this is how the proof of Proposition 5
proceeds in the appendix.

4.4. Approximating a Heterogeneous Pool by
Homogeneous Customers

Our analysis in the previous two sections allowed for a
heterogeneous customer population. The treatment of het-
erogeneity is not mathematical generality for its own sake.
In particular, heterogeneity in the duration distributions
cannot be modeled away by approximating the heteroge-
neous population with an equivalent homogeneous popu-
lation whose rental duration distribution is an appropriate
mixture of the constituent duration distributions. Via an
example, we demonstrate that it is possible to make an
arbitrarily large error in calculating b∗ doing this. This has
obvious implications for empirical estimation. It is impor-
tant to segregate customers into types when estimating
duration distributions.
Consider a customer population consisting of two

types �1, with a deterministic rental duration of 4, and �2,
with a deterministic rental duration of m/4 + 4 − 1. Sup-
pose that p�1

= 1−4 and p�2
= 4. Using (8), we see that b∗

for this population is at least 1− 4. The equivalent homo-
geneous model for this population is the two-point rental
distribution given in (9) with a b∗ that is O�4�. Clearly, the
magnitude of the error in this approximation can be made
arbitrarily large. The explanation for this effect is simple.
What goes into calculating b∗ is �, which involves a mix-
ture of residual time distributions. Of course, this need not
be distributed the same as the residual time corresponding
to the mixture of duration distributions.

5. Stocking
Thus far, we have investigated the peak of the usage process
for the customers in the setting where sufficiently many
copies of the new product are stocked upon introduction.
A natural subsequent task is to determine the optimal num-
ber of copies of the new products to stock. To do this,
we could build an economic framework assigning costs
to stocking the products and to denied customer requests.
Alternatively, we can define a performance measure and
find the smallest stock level that achieves an acceptable
level of this performance measure. We choose the latter
approach. Two performance measures that one can envisage
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are (i) probability that a stockout occurs, henceforth called
stockout probability; or (ii) the denial count, which mea-
sures the number of requests for new products that are
denied.
We first deal with the stockout probability. Let bn denote

the number of units of the new product stocked in the sys-
tem with n customers, and let 5n�bn� denote the resulting
stockout probability. The observation that the usage process
for any stock level is identical to the unrestricted usage
process up until the first time a stockout occurs allows us
to compute the stockout probability as

5n�bn�= �
(
sup
t�0

U n�t� > bn
)
� (11)

This relation allows us to utilize the asymptotic analysis
of U n carried out in the previous sections.
We are interested in finding the smallest bn that ensures

that the consequent stockout probability 5n�bn� is no big-
ger than some target �5. As before, we will answer this
in the natural asymptotic regime where n grows without
bound. The following result, which is a consequence of
Corollary 1, characterizes the asymptotically minimal stock
level bn given an �5.
Proposition 6. For a sequence of stock levels �bn� n= 1
2 � � ��, if �bn −nb∗�/

√
n→ b̂ <� as n→�, then 5n�bn�

→ ��sups∈S W�s� > b̂� as n →�. Further, if �bn − nb∗�/√
n→� as n→�, then 5n�bn�→ 0 as n→�.

As may be expected, Proposition 6 says that bn should
be nb∗ on the O�n� scale. Of course, this need not be
true in the trivial case when �5 = 1. For a given perfor-
mance level 5 ∈ �01�, if one can compute b̂ such that
��sups∈S W�s� > b̂�= 5, then this result implies that stock-
ing at a level bn = nb∗ +√

nb̂ meets this performance cri-
terion. Further, we can guarantee near-perfect service with
a stock level that is only slightly bigger than nb∗. In fact,
one can refine the excess stock level above nb∗ to any level
f �n� such that f �n�/

√
n→�. Therefore, b∗ is what really

matters in this problem.
When �5 ∈ �01�, computing the O�

√
n� refinement of

the corresponding stock level requires calculating the dis-
tribution of supt∈S W�t�. When the set S is a singleton (as it
is for the exponential and uniform distributions depicted in
Figures 3 and 4), supt∈S W�t� = W�t∗�, which is a Nor-
mal random variable. In this case, computing b̂ is straight-
forward. When S is not a singleton but is a finite set,
we need to compute the probability that the maximum com-
ponent of a multivariate Normal random variable exceeds b̂.
This is still tractable. The case when S is a general uncount-
able set is a classical open problem. There are asymptotic
results when �5 is small; we refer the reader to Adler and
Taylor (2007).
We now turn our attention to the second performance

measure, the denial count. Unfortunately, we are unable to
characterize the denials as cleanly as the stockout proba-
bility. For computing the denials, one needs to keep track

of the retrial process of customers denied the new product
in a previous attempt. This renders the analysis consider-
ably more complex. However, we can use the asymptotic
analysis in §3 to characterize stock levels that lead to neg-
ligible denials. Denoting the total number of requests for
the new product denied as a function of the capacity level
by dn�bn�, we obtain the following result.

Proposition 7. The denial count dn�bn� → 0 a.s. as
n→� for the stock level bn = �b∗ + 4�n for any 4 > 0.
Further, for almost all 6 ∈�, there exists N�6� <� such
that dn�bn6�= 0 for n > N�6�.

Obtaining the general version of Proposition 7 when the
desired denial count is nonnegligible, i.e., dn�bn� = O�n�,
appears to be a challenging problem. In particular, tools
beyond those developed in this paper may prove necessary.
We leave this as a topic for future work.
So far, we have focused on the introduction of a sin-

gle new product. However, it may be the case that several
new products are introduced within a short time span. This
is definitely true in the DVD world. Clearly, the introduc-
tion of multiple products has an implication on the usage
process of the customers, and thus on the firm’s stocking
decisions. In the following section, we demonstrate how we
can apply the tools we have developed to this setting.

6. Multiple Product Introduction
We consider the setting where k distinct new products
are introduced simultaneously at some arbitrary time. We
assume that customers request each of these k products
before requesting any other product. However, at the time
of request, the customer is indifferent between any of the
newly introduced products that the customer has not yet
rented. The system manager is free to exploit this indif-
ference. We retain the assumptions on the rental duration
distributions made in §2, although for simplicity we will
restrict our attention to the case of homogeneous customers.
To completely characterize the dynamics of this system,

we need to keep track of the usage of each individual
product, as well as the set of customers who have already
rented specific subsets of the introduced products. How-
ever, characterizing the total usage of all these k products
is simpler. Customers who are renting one of the k new
products at time t have a residual time at the time of intro-
duction smaller than t and the sum of the k subsequent
rental durations larger than t. (We do not know which of
the k products each of these customers have at t, just that
they have one.) Denote the usage process for each of the
new products by U n

j �·� for j = 12 � � �  k. Defining ū�t�≡
��R1 � tR1 +

∑k
j=1 V1j > t�, we can argue as in §3

to asymptotically characterize the total usage process in the
following fashion.

Proposition 8. supt�0 ��1/n�
∑k

j=1U
n
j �·� − ū�·�� → 0 a.s.,

as n→�.
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This result is an immediate extension of Theorem 1.1,
and we omit its proof. The peak of the total usage �U n ≡∑k

j=1 supt�0U
n
j �t� is a measure of the overall stock level

required in this setting along the lines of the discussion
in §5. At any point in time, the manager would like to
use the customers’ indifference between the various new
products to rent out products in a way that would lead
to lower �U n values. Thus, in addition to total usage, we
also need to compute a dynamic product allocation policy.
However, when implementing an optimal policy for any
symmetric cost criterion, we would want the usage of the
products to be equal to each other as much as possible.
Therefore, the corresponding asymptotic peak usage level
is given by

b∗
i ≡

1
k
lim
n→�

�U n

n
= 1

k
sup
t�0

ū�t��

In passing, we construct a policy that asymptotically
achieves this individual peak usage level for each product.
To ensure a symmetric usage, one can create k! classes of
customers, where each class corresponds to a unique per-
mutation of the order in which the products will be rented.
We assign customers to each of these classes in a uniform
manner. That is, each class will have n/k! customers (where
we drop the integrality requirement for convenience). The
allocation of the products is as follows: Upon requesting
a product for the first time after introduction, each cus-
tomer is given the first product in the permutation that
corresponds to their class. Upon return of this rental, the
customer is given the second product in their permutation,
and future allocations proceed in the same fashion until
customers have rented all the new products. This allocation
ensures that the usage of all products will be identical. For
example, consider this policy for the case of k = 2 products.
Here, we divide the customer population into two classes.
The first class corresponds to customers who rent product 1
before product 2. Similarly, the second class corresponds
to customers who rent product 2 first. By assigning half the
customer population to each class, we ensure an identical
usage of both the products, and hence obtain the desired
symmetry. Note that this policy is asymptotically equivalent
to a randomized policy, where upon request by a customer,
she is allocated a product selected randomly (uniformly)
from the set of products she has not yet rented.
The scaled total usage process is always bounded above

by one, i.e., �1/n�
∑k

j=1U
n
j �·�� 1, and thus ū�t�� 1 for all

t � 0. Further, b∗
i � 1/k for all i = 1 � � �  k given our allo-

cation policy. For a homogeneous population with a deter-
ministic rental distribution, supt�0 ū�t�= 1. Thus, b∗

i = 1/k.
For a homogeneous population with an exponential rental
distribution with mean m, ū�t� = �

∑k
j=1 t

j/�mjj!��e−t/m

and b∗
i = �1/k� supt�0 ū�t�. Figure 5 plots the peak mean

usage for one new product for a homogeneous population
for the case of exponential and deterministic rental distribu-
tions as a function of the number of distinct new products

Figure 5. Exponential vs. deterministic rental distribu-
tions: Multiple products.
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introduced. Observe that for a small number of products,
the exponential rental distribution has a lower peak usage,
but this difference decreases as more and more products are
released simultaneously. This suggests that when multiple
products are introduced simultaneously, stocking decisions
made using a deterministic rental distribution assumption
can perform fairly well. That is, the so-called multiplexing
benefit from variability in the rental distribution becomes
less significant as the degree of substitution increases.
Finally, suppose that the new products are not introduced

simultaneously. In this case, it is no longer true that �U n is
bounded above by n. In fact, if the introduction times for
the products are sufficiently staggered (on a scale measure
by m�), the problem can be approximately solved using k
replications of the analysis in §2. If the introduction times
are close together, then the analysis in this section would
approximately apply. Analysis of the general introduction
problem is fairly involved and we leave it as a topic for
future research.

7. Conclusion
In this paper, we develop a model for rental systems where
each rental completion triggers a demand for another prod-
uct. In the setting where each customer rents a particular
product only once, which is the case of Netflix, our canon-
ical rental firm, we study the introduction of a new prod-
uct from a stocking perspective. Using classical empirical
process theory, namely, the Glivenko-Cantelli and Donsker
theorems, we characterize the asymptotic behavior of the
number of copies of the new product being rented at any
time. We note that the peak of this usage process has impor-
tant implications for stocking with respect to a quality crite-
rion. In particular, a “high-quality” system is possible only
when the stock level of the new product is close to this
asymptotic peak. We characterize this level up to a O�

√
n�

level for the stockout criterion. The criterion of number
of denied requests (related to fill rate) is more involved,
and although we characterize stock levels where the denied
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requests are asymptotically negligible, the case of nonzero
denials is also important. Unfortunately, this case is not
quite tractable and requires the analysis of measure-valued
limits, which goes beyond the scope of this paper and
merits future work. Note that the case of nonzero denials
corresponds to a scarcity in capacity, and in this setting pri-
oritizing customer classes to optimize a social objective via
some form of dynamic capacity allocation may be needed.
Bassamboo and Randhawa (2009) study the structure of the
optimal control policy in such settings.
Our analysis assumes that customers can only rent one

product at a time. This assumption can be easily relaxed
as follows: If each customer rents k products at a time,
then the request time for a newly released product will be
the minimum residual time across the k products. The rest
of the analysis proceeds identically, using this minimum in
place of the random variable R.
We also consider the case of multiple product introduc-

tion. We analyze this setting when all products are intro-
duced simultaneously, and the customers are indifferent
between them. The general case where these assumptions
are relaxed is also important, and will be a useful exten-
sion. The case when customers are allowed to rent multiple
products simultaneously, although straightforward for intro-
duction of a single product, becomes more complicated
when studying multiple product introduction, and is worth
exploring.

Appendix. Proofs
We begin by establishing the following measurability
result:

Lemma 1. For each n= 12 � � � ,
1. U n is a measurable map from �� � � to

�D(0����, where D(0�� is endowed with the Skoro-
hod topology and � is the Borel �-field on D(0��.
2. supt>0U

n�t� is a measurable map from ��� � to
��	����, where 	��� denotes the Borel �-field on �.

Proof. 1. The mappings 7� � × � �→ D(0�� given
by 7�x y� = ��x � · x+ y > ·� are continuous in the
Skorohod topology, and hence U n = ∑n

i=17�Ri Vi� is
measurable.
2. Noting that U n is an RCLL (right continuous with left

limits) function, supt�0U
n�t� can be equivalently computed

by restricting the supremum to the set of rationals, thus
supt�0U

n�t� is measurable (as in the discussion following
Theorem 20.6 in Billingsley 1995).

Proof of Theorem 1. We define the functions 9t ��2+ �→
�01� for all t � 0 as follows:

9t�x y�=
{
1 if x � t and x+ y > t

0 otherwise�

Thus, U n�t� given by (5) can be written as
∑n

i=19t�RiVi�.
Let : be the class of functions 9t for all t � 0, i.e., : =
�9t� t � 0�.

We shall use the results from empirical process theory to
show the convergence of U n�·� on the fluid and diffusion
scales. For this, it suffices to show that the class of functions
: is �-Glivenko-Cantelli and �-Donsker (see pp. 269–270
in van der Vaart 2000). We show that : can be covered by
a finite number of 4-brackets and this number grows poly-
nomially as 4 shrinks to zero. The result then follows from
Theorems 19.4 and 19.5 in van der Vaart (2000).
Given two functions l and u, the bracket (l u* is the

set of all functions f with l � f � u. For a probability
distribution 
, an 4-bracket in Lr�
� is a bracket (l u*
with Ɛ
(u− l*r = ∫

�u− l�r d
 < 4r . The brackets (lj  uj *,
j = 1 � � �  J cover : if : ⊆⋃J

j=1(lj  uj *.
We begin by constructing the 4-brackets in L1��� needed

to cover the functions :. Choose 0= t0 < t1 < · · · tK =�
such that

∑
�∈� p�F�e�tk+1� − ∑

�∈� p�F�e�tk� < 4/2 for
each k. Further, choose 0 = s0 < s1 < s2 < · · · < sL = �
such that ��R1 + V1 � s&+1� − ��R1 + V1 � s&� <
4/2 for each &. Let 0 = v0 � v1 � v2 � � � � vM = �
with M � K + L − 1 denote the sorted list of the set
�t0 t1 � � �  tK�∪ �s0 s1 � � �  sL�. Define the functions

&j�x y�= ��x � vj x+ y > vj+1� and

uj�x y�= ��x � vj+1 x+ y > vj�

for j �K +L+ 1. Note that Ɛ�(uj − &j*� 4; thus, (&j  uj *
is an 4-bracket in L1���. The collection of brackets (&j  uj *
for j < K+L+1 covers the set of functions :. Noting that
F�e is continuous (even if the rental duration distribution
is discrete), we can choose points t0 t1 � � �  tK such that
K � C/4, where C is any constant strictly greater than
two. Similarly, noting that R1 + V1 also has a continuous
distribution function, we can choose points s0 s1 � � �  sL

such that L � C/4. Thus, the number of 4-brackets L1���
needed to cover :, denoted by N( *�4:L1����, is finite
for every 4 > 0. Using Theorem 19.4 from van der Vaart
(2000), we then have that : is �-Glivenko-Cantelli. Thus,
we have

lim
n→� supt�0

∣∣∣∣U n�t�

n
− u�t�

∣∣∣∣= 0 a.s.

Next, note that Ɛ�(uj − &j*
2 � 4. So, (&j  uj * is also

an
√

4-bracket in L2���. Thus, we have that the bracket-
ing number N( *�

√
4:L2����� 2C/4. (Note that we do

not need any second-moment condition on the distribution
because the functions in the set : are bounded by one.)
In addition, we have that the bracketing integral

J( *�1:L2����=
∫ 1

0

√
logN( *�4:L2����d4

�

∫ 1

0

√
log

(
2C
42

)
d4

=
∫ �

0

√
log2C + 2ye−y dy <�
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where the last equality follows by substituting y =− log 4.
Applying Theorem 19.5 of van der Vaart (2000), we have
that : is �-Donsker. Thus, we have

U n�·�− n��R1 � ·R1+V1 > ·�√
n

⇒ W�·� as n→�

where W�·� is a �-Brownian bridge. Note that using
Lemma 18.15 from van der Vaart (2000), we have that
W is a zero-mean Gaussian process. Using the discussion
on p. 269 of van der Vaart (2000), for s � t we can compute
the covariance function 2 as follows:

2�s t�= Ɛ(9s�R1 V1�9t�R1 V1�*

− Ɛ(9s�R1 V1�*Ɛ(9t�R1 V1�*

= ��R1 � sR1+V1 > t�− u�s�u�t��

Applying Lemma 18.15 in van der Vaart (2000), we
obtain that W�·� is continuous with respect to the semime-
tric @ defined as @�s t�2 = Ɛ�W�s� − W�t��2 = u�s� +
u�t� − 2��R1 � sR1 + V1 > t�. Noting the continuity
of the distribution function of R1, we obtain that for any
sequence �tr ∈�+: r = 12 � � ��, if tr → t as r →�, then
@�tr  t�→ 0. Thus, W�tr� → W�t� a.s., as r →�, and so
W is continuous a.s. �

Proof of Corollary 1. Using Theorem 1.1 and the conti-
nuity of the supremum function with respect to the uniform
metric on D(0��, we have

sup
t�0

U n�t�

n
→ sup

t�0
u�t�= b∗ a.s. as n→�� (12)

We end the proof of part 1 of the result by showing
that b∗ < � and u achieves its supremum. Note that R1 is
a finite-valued random variable with a continuous distri-
bution. Thus, u�t� = ��R1 � tR1 + V1 > t� is continuous
with a value of zero when t = 0 and approaches zero as
t →�. Thus, this function must achieve its supremum, i.e.,
there exists t∗ < � such that u�t∗� = b∗. Further, the set
S ≡ �t� u�t�= b∗� is compact.
We now prove part 2. Applying the Skorohod represen-

tation theorem (see, for example, Theorem 1.8 in Chapter 3
of Ethier and Kurtz 1986, or Theorem 5.1 in Chen and
Yao 2001), we obtain the existence of random variables
�U n and W̃ defined on a probability space ��̃ ��  ��� with
�U n d=U n and W̃

d=W and

sup
0�t�T

∣∣∣∣√n

( �U n�t�

n
− u�t�

)
− W̃ �t�

∣∣∣∣→ 0

�� -a.s. as n→� for all T > 0� (13)

Thus, to complete the proof, it suffices to prove that

lim
n→�

√
n

(
sup
t�0

�U n�t�

n
− b∗

)
= sup

s∈S

W̃ �s� �� -a.s�

We use a bounding argument to prove this statement. Note
that we have

�supt�0
�U n�t�− nb∗�√

n
� sup

s∈S

� �U n�s�− nb∗�√
n

�

Because S is compact, for any two real-valued functions
f  g, we have � sups∈S f �s� − sups∈S g�s�� � sups∈S �f �s� −
g�s��. Combining this with the convergence in (13), we
obtain∣∣∣∣sup

s∈S

� �U n�s�− nu�s��√
n

− sup
s∈S

W̃ �s�

∣∣∣∣→ 0

�� -a.s. as n→��

Thus, using u�s�= b∗ for s ∈ S, we obtain

lim inf
n→�

�supt�0
�U n�t�− nb∗�√

n
� sup

s∈S

W̃ �s� �� -a.s. (14)

Let An be the smallest maximizer of �U n�·�, i.e., An =
inf�t� �U n�t� = sups�0

�U n�s��. The existence of An follows
from the fact that sups�0

�U n�s� <� because �U n�0�= 0 and
limt→� �U n�t� = 0, and the point at which the supremum
is first achieved is well defined because �U n has piecewise
constant RCLL sample paths. To see that An is a measur-
able random variable, note that we can write �An � y� =
�supt�y

�U n�t� � supt�y
�U n�t��, and because �U n has RCLL

paths, the quantities supt�y
�U n�t� and supt�y

�U n�t� are mea-
surable (arguing as in the proof of Lemma 1.2).
Fix an 6 ∈ �̃ such that the convergence in (13) holds.

Using the definition of An, we can write

�supt�0
�U n�t�− nb∗�√

n
= � �U n�An�− nb∗�√

n

�
� �U n�An�− nu�An��√

n


where the inequality follows from the fact that u�An�� b∗.
We now establish that any cluster point of �An� must lie
in S. We proceed by a contradiction argument. Assume the
contrary, i.e., there exists a cluster point of �An� that does
not lie in S. Then, there exists a subsequence �Ank� such
that Ank → A ∈ (0�*\S as k →�. Then, we have∣∣∣∣ �U nk�Ank �

nk

− u�A�

∣∣∣∣� ∣∣∣∣ �U nk�Ank �

nk

− u�Ank�

∣∣∣∣+ �u�Ank�− u�A��

� sup
t�0

∣∣∣∣ �U nk�t�

nk

− u�t�

∣∣∣∣+ �u�Ank�− u�A��

which combined with the continuity of u gives us

�U nk�Ank �

nk

→ u�A� < sup
t�0

u�t�
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as k →�, where the inequality is strict as A � S. However,
we can rewrite (12) as �U n�An�/n→ supt�0 u�t� as n→�,
which gives us the required contradiction. Thus, for any
subsequence denoted by nk, there exists a further subse-
quence denoted by nk&

such that Ank& → A ∈ S. Using the
convergence in (13) and the continuity of W̃ , we obtain

lim
&→�

� �U nk& �Ank& �− nk&
u�Ank& ��

√
nk&

= W̃ �A�� sup
s∈S

W̃ �s�

which immediately gives us

lim sup
n→�

� �U n�An�− nu�An��√
n

� sup
s∈S

W̃ �s�� (15)

Combining (14) and (15), we obtain

√
n

(
sup
t�0

�U n�t�

n
−b∗

)
→sup

s∈S

W̃ �s� �� -a.s., as n→�

and the result follows. �

Proof of Proposition 3. Using the characterization of
b∗ in (8), we obtain the asymptotic peak of the usage pro-
cess corresponding to the distribution F4, b

∗
F4
=max�4m4+

42 − 43�. Thus, b∗
F4

= O�4�. Further, we can compute∫ �
0 x2dF4�x�=m2/4−2m+ 4�2m+1�− 42. Thus, the sec-
ond moment of this distribution is O�1/4�. This completes
the proof of part 1. Noting that 4 is arbitrary, part 2 imme-
diately follows. �

Proof of Proposition 4. Using (8), we have

b∗ = sup
t�0

∫ t

0 exp�−s/m� exp�−�t − s�/m�ds

m

= sup
t�0

t

m
exp

(
− t

m

)
= sup

t�0
te−t

= e−1� �

Proof of Proposition 5. As stated in (10),

b∗
d = sup

0�t�2d

∑
�∈�

p�

∫ t

0 �1− F d
� �s���1− F d

� �t − s��ds∫ d

0 �1− F d
� �s��ds



where F d
� is the rental time distribution of a type � cus-

tomer truncated at d. Define

A��td�≡
∫ t

0 �1− F d
� �s���1− F d

� �t − s��ds∫ d

0 �1− F d
� �s��ds

for � ∈� and 0� t � 2d. Noting that F d
� �s�= 1 for s � d,

we obtain for each t � d,

A��td�≡
∫ d

0 �1− F d
� �s���1− F d

� �t − s��ds∫ d

0 �1− F d
� �s��ds

�

Because F d
� �t − s� is increasing in t for each s, we obtain

that A��td� is nonincreasing for t � d, and we have

b∗
d = sup

0�t�2d

∑
�∈�

p�A��td�= sup
0�t�d

∑
�∈�

p�A��td��

To prove the result, it suffices to show that for any d1 � d2
and t ∈ (0d2*, there exists a t̂ ∈ (0d1* such that
A��t̂ d1��A��td2� for all � ∈�.
Case I: For t � d1, we can write

A��td1�

A��td2�
=

∫ d2
0 �1− F��s��ds∫ d1
0 �1− F��s��ds

�

Thus, noting that
∫ d

0 (1− F d
� �s�*ds is increasing in d, we

obtain A��td1��A��td2� for all � ∈�.
Case II: We consider t ∈ �d1d2*. We show that

A��dd� is nonincreasing in d. Note that F d
� �s�= F��s� for

s < d, and thus we can write

A��dd�=
∫ d

0 �1− F��s���1− F��d− s��ds∫ d

0 �1− F��s��ds
�

The derivative of A��dd� with respect to d is given by∫ d

0 �1− F��s��ds(�1− F��d��− ∫ d

0 �1− F��s��dF��d− s�*

�
∫ d

0 �1− F��s��ds�2

− �1− F��d��
∫ d

0 �1− F��s���1− F��d− s��ds

�
∫ d

0 �1− F��s��ds�2

�a�

�

([∫ d

0
�1− F��s��ds

]
�1− F��d��

[
1−

∫ d

0
dF��d− s�

]
− �1− F��d��

∫ d

0
�1− F��s���1− F��d− s��ds

)
·
(∫ d

0
�1− F��s��ds

)−2

= 1−F��d�

�
∫ d

0 �1−F��s��ds�2

[∫ d

0
�1−F��s���F��d−s�−F��d��ds

]
�b�

� 0

where �a� follows as F��s�� F��d� and �b� follows by the
monotonicity of F��·�. Thus, we have A��t t��A��d1d1�
for all � ∈ �. Repeating the argument in Case I, we
have A��t t� � A��td2� for all � ∈ �. Combining these
inequalities, we obtain A��d1d1� � A��td2�, and this
completes the proof. �

Proof of Proposition 6. The first part of the result fol-
lows from Corollary 1.2. The second part of the proof fol-
lows by noting that the stockout probability is monotone
in bn. �

Proof of Proposition 7. Pick a sample path 6 ∈ � on
which supt�0U

n�t�/n → b∗ as in Corollary 1.1. Then,
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there exists N4�6� < � such that on 6, supt�0U
n�t� �

n�b∗+4�= bn for n > N4�6�. Noting that if supt�0U
n�t��

bn, then dn�bn�= 0, and the result follows. �
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