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We study a profit-maximizing firm providing a service to price and delay sensitive customers. We are
interested in analyzing the scale economies inherent in such a system. In particular, we study how the

firm’s pricing and capacity decisions change as the scale, measured by the potential market for the service,
increases. These decisions turn out to depend intricately on the form of the delay costs seen by the customers;
we characterize these decisions up to the dominant order in the scale for both convex and concave delay costs.
We show that when serving customers on a first-come, first-served basis, if the customers’ delay costs are strictly
convex, the firm can increase its utilization and extract profits beyond what it can do when customers’ delay
costs are linear. However, with concave delay costs, the firm is forced to decrease its utilization and makes less
profit than in the linear case. While studying concave delay costs, we demonstrate that these decisions depend
on the scheduling policy employed as well. We show that employing the last-come, first-served rule in the
concave case results in utilization and profit similar to the linear case, regardless of the actual form of the delay
costs.
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1. Introduction
Increasing the scale of a service operation, by serv-
ing a larger market perhaps, has several benefits for
the service provider. Given that service operations
typically face variability, and serve customers who
care about the impact of this variability (as measured
by delay), the provider can mitigate this impact by
exploiting statistical economies of scale inherent in
such operations. This exploitation can take the form of
increasing the utilization of the service, by making the
realized traffic at the service heavier, without degrad-
ing quality as perceived by its customers. It can also
take the form of increasing prices to extract the sur-
plus provided to customers in the form of better qual-
ity of service. And it can be any combination of these
two approaches. The primary goal of this paper is to
estimate the limits of the benefits of increased scale
to a monopolistic service provider. In particular, we
want to know how the system utilization increases
and how much profit the firm can expect to make as
the scale increases. Moreover, we want to know how

these limits depend on the customers’ price and delay
sensitivity, as well as the configuration by which the
service is provided.
Perhaps the simplest example by which to observe

such benefits of scale is in staffing a call center, where
pricing is not a lever that can be exploited. If the cus-
tomers experience linear disutility to delay, or in other
words, linear delay costs, and the provider experi-
ences linear staffing costs, the optimal prescription is
the well-known square root staffing rule. When facing
a high volume of customer calls, the provider staffs
so that the capacity is equal to the arrival rate plus
a “safety capacity” proportional to the square-root
of the arrival rate to handle variability (see the sur-
vey paper by Gans et al. 2003 for a detailed descrip-
tion). Under this rule, if the scale (as measured by
the arrival rate) increases fourfold, the safety capacity
only doubles; that is, as the scale increases, the safety
capacity expressed as a fraction of the scale decreases,
eventually approaching zero. Despite this, increas-
ing the scale of the system ensures that the quality
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of service actually improves; the delays observed by
the customers become smaller. This combination of
increasingly high utilization and increasingly high
quality of service illustrate the benefit of increasing
scale to the provider.
The square-root staffing rule is known to be the best

the provider can do as long as customers value delay
linearly. In general, this need not be the case. Cus-
tomers could value delay either in a convex fashion,
disliking the second unit of delay more than the first,
or in a concave fashion, disliking the first unit of delay
more than a subsequent unit of delay. There is no rea-
son to pick one or the other model of customers’ delay
sensitivity a priori. Moreover, pricing the service is
also an important issue. The goal of this paper is to
study how a provider can exploit increasing scale in a
market of price and delay sensitive customers, under
both convex and concave delay sensitivity. In our
setting, increasing scale translates to increasing the
potential market of homogenous customers. If price
and the distribution of delay were both held fixed,
then increasing the scale simply translates to an iden-
tical increase in arrival rate; that is, in our setting, each
customer’s behavior is independent of the scale of the
operation the customer is served by. This is a natu-
ral assumption for the question we are interested in,
namely, how does growing the customer base benefit
the provider?
Arguing by analogy from the square-root staffing

rule, we can conjecture that as scale increases, the
safety capacity as a fraction of the scale decreases
and the delay improves. Adding pricing complicates
the picture, but the basic intuition does go through.
However, the nonlinearity of delay sensitivity can also
be exploited. Consider the convex sensitivity case.
Because customers with convex sensitivity are less
sensitive to small delays than customers with linear
sensitivity, and we expect delays to be small when
the scale is large, the provider may actually do better
in the convex case than the linear case. Our analy-
sis bears out this intuition and precisely characterizes
the best the provider can do. A by-product of our
analysis shows that the provider operates in a regime
where the configuration by which the service is pro-
vided (one fast server or many slow servers) is irrel-
evant up to the dominant order. We also obtain the

analogous but opposite result for the concave sensi-
tivity case; the provider does worse than in the linear
case if she chooses to serve customers on a first-come,
first-served (FCFS) basis. Although the FCFS service
discipline is the choice for linear or convex delay sen-
sitivity, it is not the correct choice for concave sensitiv-
ity, where the opposite, last-come, first-served (LCFS),
is the preferred discipline. When LCFS discipline is
used, we find that the best the provider can do is
the same as in the linear case; somewhat surprisingly,
the service rule negates the effect of concave delay
sensitivity.
Finally, a note on the motivation for asymptotic

analysis in our paper is in order. In many papers
that study queueing in service operations, asymp-
totic analysis is used as an analytical tool; that is,
the papers are really interested in providing the
answer to one particular problem, and they find it
convenient to embed that problem in a sequence of
problems whose asymptotic limits are easier to char-
acterize. This allows for considerable leeway in how
the sequence is chosen. In contrast, in our setting, we
are actually interested in the behavior of one partic-
ular sequence, which is predetermined; that is, our
sequence is always the one corresponding to increas-
ing the scale as measured by market size, holding
everything else fixed. Moreover, the sequence is not
just an analytical device to arrive at an answer con-
veniently; it is the answer to our primary question,
namely, how can the provider exploit scale?

1.1. Literature Review
There is a vast amount of literature devoted to the
use of different forms of the square-root rules in large
systems. The basis for this literature is the heavy traf-
fic approximation of queueing systems, which can
be broadly divided into two streams: one that deals
with a single server or a fixed number of servers
(see, for example, Kingman 1961), and one that deals
with the so-called “many-server” systems, introduced
in Halfin and Whitt (1981). These two modeling
approaches have a fundamental difference. The anal-
ysis of single-server queues only requires that the
utilization be near 100% and uses a time scaling
approach to derive the approximations. However, the
many-server regime requires the system size, or the
number of servers, to increase without bound as well
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as the utilization to approach 100%; the system size
provides the natural operating scale of the system.
The approximations derived by both these methods

have found great applicability in computing perfor-
mance estimates in queueing systems, and computing
excellent routing or scheduling policies. In single-
server systems, for example, Van Mieghem (1995),
Stolyar (2004), and Mandelbaum and Stolyar (2004)
solve scheduling problems with convex delay costs;
Ata and Olsen (2009) solve similar problems with
convex-concave costs. The many-server regime has
primarily been used to analyze staffing and schedul-
ing in call centers; for example, see Garnett et al.
(2002), Armony (2005), Dai and Lin (2008), Gurvich
and Whitt (2008), and Tezcan (2008). These papers
consider a square-root staffing regime where the num-
ber of servers is of the form �n + �

√
n, where n

denotes the system size (usually market size is mea-
sured by the customer arrival rate).
Recently, there has been a shift toward utiliz-

ing the aforementioned heavy traffic approximation
machinery to studying queueing systems from an
economic perspective, i.e., viewing the customers as
rational and the service provider as profit maximiz-
ing.1 In such settings, one needs to verify that the
profit is indeed maximized when operating in the
square-root regime. Some examples of papers that
provide such justification are Maglaras and Zeevi
(2003), Maglaras and Zeevi (2005), Plambeck and
Ward (2006), and Randhawa and Kumar (2008). These
papers use scale-independent delay costs similar to
those in this paper; however, they restrict attention
to costs that are linear in the performance measure.
On the other hand, there are papers that deal with
nonlinear delay costs, without including pricing, that
perform their analysis by scaling these costs; see, for
example, Van Mieghem (1995), Stolyar (2004), Man-
delbaum and Stolyar (2004), Dai and Lin (2008), and
Gurvich and Whitt (2008). When dealing with non-
linear costs, one can choose to incorporate the effect
of the entire delay cost function by “scaling” the delay
cost. However, such a “cost scaling” approach would
require that customers alter their behavior according

1 Economic analysis of queueing systems by itself has a long his-
tory going back to Naor (1969). See Hassin and Haviv (2003) for a
detailed review.

to the size of the system. This may not be appropri-
ate from a modeling perspective, especially in systems
with rational customers. Therefore, our approach is
to simply not scale costs, that is, we assume that the
rational customers’ delay sensitivity is absolute and
independent of the system size. There is a dearth of
literature that undertakes such “scale-independent”
analysis. In fact, Whitt (2003) and Borst et al. (2004)
are the only papers we are aware of that follow this
approach. Filling this lacuna while incorporating pric-
ing is the primary focus of our paper.
Though this paper is related to Whitt (2003) and

Borst et al. (2004), there are important differences.
Whitt (2003) studies the impact of congestion on the
performance of the system by positing an aggregate
relationship between the delay in the system and the
customer arrival rate. The ensuing equilibrium pro-
vides an illustration of a setting where the operat-
ing regime differs from the conventional square-root
regime. In contrast, we explicitly model the relation
between customer disutility and system delay and
study the behavior of the firm’s profit maximizing
regime as the system size increases. Borst et al. (2004)
derives asymptotically optimal capacity prescriptions
with the objective of minimizing the sum of delay and
capacity costs for many-server configurations. In con-
trast, the objective of this paper is to study the man-
ner in which the optimal operating regime depends
on the structure of scale-independent delay costs, and
in particular how the firm can exploit the increas-
ing scale by both pricing and capacity sizing. We
find that for strictly convex delay costs that have
a zero derivative at the origin, the optimal operat-
ing regime is heavier than conventional square-root
regimes, and is one where the many-server configu-
ration reduces to a single-server configuration. Our
results further demonstrate that the optimal operating
regime depends on the scheduling policy employed in
addition to the delay costs. The choice of the schedul-
ing policy is moot in the case of linear delay costs,
and thus demonstrates that additional care must be
taken when dealing with nonlinear delay costs.

1.2. Organization
We begin in §2 with a formal model description and a
summary of results. Section 3 is the core of this paper
and studies the joint pricing and capacity sizing prob-
lem, and derives the optimal strategy for a firm in
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wake of increasing scale. Sections 4 and 5 consider
the case where one decision variable is held constant
and the other is optimized. In §4, we study a situa-
tion where the capacity growth is predetermined and
only price has to be chosen. This case turns out to be
more complicated than the general case, but it serves
as a useful detour to illustrate when heavy traffic may
not be achieved. Next, in §5, we consider the problem
of optimizing capacity when prices are exogenously
fixed. Sections 3–5 focus on the single-server configu-
ration. All of the results hold in an appropriate sense
in the many-server configuration as well, and this is
the subject of §6. We conclude in §7. Proofs of all
results are relegated to the appendix.

2. Model and Summary of Results
We consider a monopolistic firm that serves a mar-
ket of price and delay sensitive customers. We model
the firm as a queueing system, with the firm provid-
ing service either via a single-server or a many-server
configuration, in an FCFS fashion. The service require-
ment of all customers are independent and exponen-
tially distributed with the same mean. The firm sets
an access price p and chooses either a service rate �
in the single-server setting, or the number of servers s
in the many-server setting, to maximize its profit. The
firm faces a linear cost of capacity.
Customers arrive to the firm as a Poisson process

with rate n��p + 	
, where n represents the market
size, ��·
 represents a demand curve, and 	 represents
the delay cost. For the most part, the crucial assump-
tion in this paper is that the delay cost is of the form
	 = hƐW r for some r ≥ 1 and h > 0, where W denotes
the steady-state delay (time in queue). This demand
function can be interpreted as follows: potential cus-
tomers arrive to the firm as a Poisson process with
rate n��0
. Each potential customer has a valuation of
the service V , which is independent and identically
distributed across the customers. The potential cus-
tomers have no system information, and thus decide
to join the system only if their valuation exceeds the
expected cost of joining, which is the sum of the
price p and the expected steady-state delay cost 	;
that is, potential customers join the system only if
V ≥ p+	. Thus, the effective rate at which customers
arrive to the firm is n��0
��V ≥ p + 	
. Note that
this demand function represents customers who are
agnostic tothe size of the market—at a given p and 	,

their behavior is the same regardless of n; n simply
scales the overall rate seen by the firm. This seems to
be a reasonable assumption.
The system manager sets p and the capacity level to

maximize the firm’s expected profit. The profit func-
tion will be made explicit in each of the settings stud-
ied later.
In all the ensuing analyses, we make the following

assumptions on the demand function.

Assumption 1. (a) �� �0��
→ �0��
 is positive, de-
creasing, continuously differentiable, and satisfies

lim
p→0

��p
=� and lim
p→���p
= 0�

(b) The revenue function p��p
 has no trivial maximiz-
ers, that is, argmaxp��p
 ∈ �0��
.

The assumption that the domain and range of �

is �0��
 is for convenience alone and can easily be
relaxed to the case when both the domain and range
are intervals of the form �x�y
 with 0 ≤ x < y ≤ �
(which includes the case of linear demand).
Before continuing, we introduce one piece of nota-

tion: for real-valued functions a� b� � → �+, we use
the notation a�n
=��b�n

 to denote the existence of
constants C1�C2 > 0 such that C1b�n
 ≤ a�n
 ≤ C2b�n


for all n ∈ �. We also use the notation a�n
 = o�b�n



to denote a�n
/b�n
→ 0 as n→�.
In this paper, we consider two configurations by

which the firm provides service, namely, the single-
server and the many-server configurations. For the
most part, we focus on the single-server configura-
tion. We will briefly discuss the case of the many-
server configuration in §6.

2.1. Single-Server Configuration
In this configuration, customers are served by a sin-
gle server; this is the well-knownM/M/1 setting. The
system manager’s objective is to maximize the firm’s
profit by appropriately setting the price and capac-
ity level measured by the service rate �. The demand
seen by the firm (i.e., the arrival rate as a function
of the price and delay) is n��p + 	
. There is a cost
of �� with � > 0 associated with selecting a service
rate �. Thus, the firm’s profit upon setting a price p

and capacity level � is pn��p + 	
 − ��. The system
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manager’s optimization problem in this setting can be
written as

max
p��≥0

pn��p+ 	
−��

s.t. � > n��p+ 	


	 = hƐW r�

This optimization problem optimizes the firm’s ex-
pected steady-state profit in equilibrium. In this case,
for a given price and capacity pair, an equilibrium
is defined by a steady-state delay distribution such
that the corresponding expected delay cost 	 induces
a time-homogenous arrival rate n��p + 	
 consis-
tently. As the equilibrium arrival rate is time homoge-
nous, we can use the well-known results for an
M/M/1 queue to characterize 	. In particular, for an
M/M/1 queue with arrival rate �, service rate �, and
utilization �= �/� < 1, the distribution of the steady-
state delay is given by

��W > t
= �e−��−�
t� (1)

and hence the delay cost hƐW r is given by

hƐW r = h�
"�r + 1

��−�
r

� (2)

where " denotes the Gamma function and satisfies
"�r + 1
 = r ! for r ∈ �+. We direct the reader to
Asmussen (2003, §9 of Chapter III) for details. Thus,
replacing � by the equilibrium arrival rate n��p+ 	
,
we obtain

	≡hƐW r =h
n��p+hƐW r


�

"�r+1

��−n��p+hƐW r

r

� (3)

The system manager’s optimization problem can thus
be written as

max
p��≥0

pn��p+ 	
−��

s.t. � > n��p+ 	


	 = h
n��p+ 	


�

"�r + 1

��−n��p+ 	

r

�

(4)

2.2. Notion of k-Heavy Traffic and Summary of
Results

Our first result is to establish that an increase in scale,
under suitable conditions (that will be made precise),

leads to a system utilization that is near 100%. We
differentiate between the ways in which the utiliza-
tion at market size n, denoted by �n, approaches 1,
i.e., between the different types of the so-called heavy
traffic regimes. For this we introduce the notion of the
k-heavy traffic regime.
Definition 1 (k-Heavy Traffic Regime). A system

with traffic intensity �n, where n is the market size,
is said to be in a k-heavy traffic regime for k ∈ �+ if
nk�1−�n
→C ∈ �0��
 as n→�.
According to this definition, the conventional heavy

traffic regime where
√

n�1 − �n
 converges to some
positive, finite constant will be henceforth referred to
as 1/2-heavy traffic.
In the view of achievable limits of the exploitation

of market size, our main result relates the heavy traf-
fic regime to the delay sensitivity of the customers.
In particular, if customers value delay (or suffer disu-
tility) as ƐW r , for r ≥ 1, where W is the realized
delay, then r determines the heavy traffic regime. The
regime achieved by a rational firm is r/�r + 1
-heavy
traffic as defined above; that is, the larger the value
of r , the heavier the traffic. Moreover, the maximal
achievable profit is $%

n = n��$ − ��n−r/�r+1


, where
�$ is an “unattainable ideal” profit (per unit of market
size), which corresponds to no delays at all; that is, the
firm achieves a profit that deviates from an unattain-
able ideal by a quantity that diminishes with r .
Turning now to achieving the limits of attain-

able performance identified above, we carry out an
asymptotic analysis in the regime identified. We pro-
vide explicit prescriptions for price and capacity that
achieve these limits up to a negligible tolerance.
This provides a complete normative perspective on
asymptotic analysis of such systems. As a by-product
of our analysis, we show that for strictly convex costs
(r > 1) our prescriptions are the same, regardless of
configuration (single or many server). This equiva-
lence of configuration has not been explicitly noted
before in literature.
The case when r < 1, i.e., there are concave costs, is

more involved. If the firm chooses to operate under
the FCFS discipline, then results analogous to the r ≥
1 case are obtained. The maximal profit is $n = n��$−
��n−r/�r+1


, and the firm operates in r/�r + 1
-heavy
traffic. However, it may not be in the firm’s interest
to operate FCFS. If, for example, it chooses to operate
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LCFS, which is optimal for the single-server configu-
ration, then the results are qualitatively different. The
firm always operates in 1/2-heavy traffic, regardless
of r , and the profit is n�$−��

√
n
. This allows us to

conclude, somewhat surprisingly, that the choice of
the scheduling rule may determine the type of heavy
traffic achieved. This suggests caution especially with
approaches that first fix the heavy traffic regime and
then attempt to determine a scheduling rule.

3. Joint Pricing and Capacity Sizing:
Limits of Achievable Performance
and Prescriptions

This section focuses on solving the joint pricing and
capacity sizing problem for different delay cost struc-
tures. For the most part, we focus on delay costs of
the form ƐW r . Section 3.1 discusses the case of convex
costs (r ≥ 1), and §3.2 discusses the case of concave
costs �0< r < 1
. Going beyond power functions, §3.3
discusses the case of general delay costs.

3.1. Convex Delay Costs �r ≥ 1

In this case, the system manager optimizes prof-
its jointly on price and capacity by solving the
optimization problem (4). Before analyzing the solu-
tion analytically, we discuss a numerical illustration
of the interaction among the optimal solution, system
scale, and delay cost structure. We consider the case of
linear demand, ��x
= 4−x for 0≤ x ≤ 4, and compare
the optimal solution for linear and quadratic delay
costs, i.e., 	 = hƐW r for r = 1�2. We fix the parameters
h= 1 and �= 1.
Table 1 compares the optimal solution (which is

computed as a numerical solution of (4)) for the
case of linear and quadratic delay costs for differ-
ent system sizes. As one expects for small system

Table 1 Comparison of the Optimal Solution for Linear and Quadratic
Delay Costs

Linear delay costs Quadratic delay costs

n Traffic intensity Profit Traffic intensity Profit

1 0�54 0�52 0�45 0�20
10 0�79 15�72 0�79 17�09

100 0�92 201�6 0�95 212�6

Notes. For a smaller scale (n= 1), the system with quadratic delay costs has
a lower traffic intensity and profit. As the scale increases, the system with
quadratic costs has a higher traffic intensity and profit.

sizes (n= 1), the system with linear delay costs domi-
nates the one with quadratic delay costs. However, as
the system scale increases, quadratic delay costs lead
to higher profits compared to the linear case. Note
that the utilization is also higher for the system with
quadratic delay costs. This is intuitive because when
the system scale increases, the delay reduces due to
the economies of scale in queueing systems. When the
delay is very small, quadratic delay costs are much
lower than linear delay costs, and this allows the sys-
tem manager to increase utilization, and hence gener-
ate higher profits in the quadratic case.
We now formalize this intuition by analyzing (4).

For convenience, we will use the standard method of
rewriting (4) as a problem of selecting the optimal
arrival rate instead of the optimal price. Note that
given an arrival rate �, the price that will “generate”
this arrival rate in equilibrium solves

n��p+ 	
= ��

and hence, using the expression for delay cost in (2),
it is given by

p =�−1��/n
−h
�

�

"�r + 1

��−�
r

� (5)

Thus, the optimization problem (4) can be equiva-
lently solved with the arrival rate as a decision vari-
able instead of the price. The corresponding objective
function is now given by ��−1��/n
−h��/�
�"�r+1
/
�� − �
r 

� − ��. Next, we replace the dummy vari-
able for arrival rate � by n�̂, and that for capacity �

by n�̂. (We will use “·̂” to represent scaled parameters
throughout this paper.) This gives us the following
equivalent problem:

n

[
max

�̂≥0� �̂>�̂

(
�−1��̂
−h

�̂

�̂
n−r " �r + 1


��̂− �̂
r

)
�̂−��̂

]
� (6)

Let $%
n and ��̂%

n� �̂%
n
 denote the optimal objective

function and any optimizer of this problem, respec-
tively. We will lay out the large market asymptotic
properties of the optimal profit $%

n by first deriving
an upper bound on $%

n for all n. We will compute an
upper bound that is natural, namely, the profit in an
idealized system that incurs no delays at all, denoted
by $%

�. Then, we will estimate the deviation of $%
n

from $%
�.
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It is straightforward to see that the profit in the
idealized system $%

� is the solution to the following
optimization problem:

max
�̄≥0

�−1��̄
�̄−��̄� (7)

We assume that any optimizer of this ideal problem
�̂%
� satisfies 0 < �̂%

� < �. Then, using the first-order
conditions that the optimal solutions must satisfy, we
obtain the following characterization.

Proposition 1. For r ≥ 1, under any solution of (6),
the system operates in r/�r+1
-heavy traffic. Furthermore,
the optimal profit is given by $%

n = n&$%
� −��n−r/�r+1

'.

The proofs of all results are postponed to the
appendix. This result states that the optimal operating
regime is r/�r + 1
-heavy traffic. Note that for r > 1,
this implies that the optimal utilization is greater than
1/2-heavy traffic, which is optimal for the case r =
1. This is intuitive because for large system sizes,
the delay will be negligible, and hence strictly con-
vex costs (r > 1) lead to further lower delay costs
compared to the linear case. This allows the system
manager to increase utilization, and generate higher
profits compared to the linear case.
Remark 1. The fact that the optimal solution leads

to r/�r + 1
-heavy traffic follows from the first-order
optimality conditions, and an intuitive explanation
is as follows. It is clear that the optimal capacity
must satisfy n�̂%

n = n�̂%
n+(%

n for some (relatively) small
(%

n > 0; that is, the rate at which delay cost is accu-
mulated under the optimal solution is proportional
to n�1/�n�̂%

n − n�̂%
n


r 
 = n�(%
n


−r (this follows from (2)).
The optimal solution will, in fact, be such that nei-
ther the delay cost nor the cost of capacity in excess
of the arrival rate dominate in the limit; that is, we
must have ��n�(%

n

−r 
 = ��(%

n
, and we obtain that
(%

n = ��n1/�r+1

, i.e., the optimal operating regime is
r/�r + 1
-heavy traffic.
We now characterize the optimal prescriptions. We

lower our aspirations to computing prescriptions that
are within a negligible tolerance of the optimal solu-
tion. One approach is to use the first-order optimal-
ity conditions to characterize the optimal solution.
Instead, we present a more generic approach that can
potentially be extended to more complex systems.

We begin by noting that ��̂%
n� �̂%

n
 → ��̂%
�� �̂%

�
 as
n→�, where �̂%

� is the optimizer of (7); for conve-
nience, we will assume that (7) has a unique solution.
Thus, for our prescription, it suffices to consider solu-
tions of the form �̂n = �̂%

� + )n and �̂n = �̂%
� + (n with

)n < (n, and )n�(n → 0 as n→�.
Using a Taylor series expansion around �̂%

�, we can
write the corresponding profit function

$n��̂n� �̂n
 = n

[
$%

� + )n

[
�̂%
�

�′��−1��̂%�


+�−1��̂%

�


]

− �̂%
�	n −�(n + o�)n


]
� (8)

where 	n is the corresponding delay cost. Using the
fact that �̂%

� satisfies the first-order condition for opti-
mality, we obtain �̂%

�/��′��−1��̂%
�


 + �−1��̂%

�
 = �,
and thus the optimization problem reduces to

n
[

min
)n�(n∈�� (n>)n

�̂%
�	n +��(n − )n


]
�

Applying Proposition 1, it suffices to restrict atten-
tion to cases where (n − )n = *n−r/�r+1
 + o�n−r/�r+1

�
Furthermore, we have 	n = "�r + 1
*−rn−r/�r+1
 +
o�n−r/�r+1

, and so we obtain the following optimiza-
tion problem ignoring the lower-order terms in n:

n1/�r+1

[
min
*>0

�̂%
�h"�r + 1
*−r +�*

]
� (9)

This immediately yields the following near-optimal
prescriptions.

Proposition 2. Fix an ) ∈ � arbitrarily. Let *% =
�hr�̂%

�"�r + 1
/�
1/�r+1
 denote the solution to (9).
Then, for r ≥ 1, the prescription ��̂%

� + )n−r/�r+1
� �̂%
� +

&)+*%'n−r/�r+1

 is optimal up to a negligible tolerance. To
be specific, it yields a profit that is within o�n1/�r+1

 of the
optimal solution to (6).

It is worth noting that there are infinitely many
near-optimal prescriptions possible, one for each ).
All of these prescriptions lead to a negligible tolerance
with respect to the optimal values. Although we have
two degrees of freedom in choosing )n and (n, we
need only one degree of freedom to achieve the opti-
mal profit within a negligible tolerance; that is, price
and capacity can be effectively traded off against each
other, and we need only one of these two levers. This



Kumar and Randhawa: Exploiting Market Size in Service Systems
518 Manufacturing & Service Operations Management 12(3), pp. 511–526, © 2010 INFORMS

observation has been made before in other settings;
see, for example, Randhawa and Kumar (2008). How-
ever, unlike in Proposition 1, the tolerance with which
the prescriptions are specified is higher than that of
their corresponding profit levels.

3.2. Concave Delay Costs �0< r < 1

We now consider the case 	 = hƐW r for 0< r < 1, i.e.,
the case of strictly concave costs. When delay costs
are concave, the FCFS policy no longer minimizes the
expected delay costs. In fact, in a single-server system,
if customers may be served in any order, the LCFS
policy produces the lowest delay cost (cf. Li 1996).
However, in many settings, because of fairness con-
cerns, the FCFS may be the only policy that can be
implemented. For this reason, as well as for continuity
of exposition, we first analyze the solution under the
FCFS policy and then consider the (nonpreemptive)
LCFS policy.
The optimization problem for a fixed scheduling

policy for the single-server configuration is given by

max
p��≥0

pn��p+ 	
−��

s.t. � > n��p+ 	


	 = hƐW r�

(10)

where 	 is calculated under the fixed scheduling
rule. The following result characterizes the asymp-
totic behavior of the optimal solution under FCFS
scheduling.

Proposition 3 (FCFS Policy). For delay costs of the
form 	 = hƐW r with 0 < r < 1, for any solution to (10)
under the FCFS policy, the system operates in r/�r + 1
-
heavy traffic.

Proposition 3 says that the form of the result for the
single-server configuration is identical to that for r ≥ 1
derived in Proposition 1; that is, although the traffic is
actually “lighter” in this regime, the functional form
is identical.
Turning to the LCFS policy, which minimizes the

delay costs, the following result establishes the opti-
mal regime.

Proposition 4 (Optimal Policy: LCFS). For delay
costs of the form 	 = hƐW r with 0< r < 1, for any solu-
tion to (10) under the LCFS policy, the system operates in
1/2-heavy traffic.

Table 2 Comparison of the Optimal Solution for Linear and
Square-Root Delay Costs

Linear delay costs Square-root delay costs (r = 1/2)

FCFS LCFS FCFS

n Traffic intensity Profit Traffic intensity Profit Traffic intensity Profit

1 0�54 0�52 0�67 0�8 0�62 0�7
10 0�79 15�72 0�86 15�14 0�79 13�8

100 0�92 201�6 0�95 192�7 0�89 180�2

Notes. For a smaller scale (n = 1), the system with square-root delay costs
has a higher traffic intensity and profit. As the scale increases, the system
with linear costs generates a higher profit. As expected, in the case of square-
root delay costs, the LCFS policy outperforms the FCFS policy.

This result implies that under the LCFS policy, the
optimal operating regime is in fact the conventional
1/2-heavy traffic. So, not only does the form of the
delay cost affect the nature of heavy traffic, but also
the scheduling rule. And the scheduling rule we chose
here is not a pathological one. It is indeed optimal if
minimizing delay costs is the objective.
Table 2 provides an illustration of the above results

by comparing the optimal solution (which is com-
puted as a numerical solution of (10)) for the case of
linear and square-root delay costs (r = 1/2) for differ-
ent system sizes. The same demand function and cost
parameters are used as for Table 1. We obtain analo-
gous results: for small system sizes (n= 1), the system
with square-root delay costs dominates the one with
linear delay costs, although, even for moderate scales
(n= 10), linear delay costs generate higher profits.
3.3. General Delay Costs: Going Beyond

Power Functions
Our aim here is to develop insights for the case of
general delay cost functions of the form 	 = hƐd�W
.
We will consider delay functions d� �+ →�+ that are
differentiable, increasing, and satisfy d�0
= 0, d�x
 > 0
for x > 0, and

∫ �
0 d�x
e−,x dx < � for some , > 0. We

will fix the scheduling policy as FCFS. The manager’s
optimization problem for the single-server configura-
tion can be explicitly written as

max
p��≥0

pn��p+ 	
−��

s.t. � > n��p+ 	


	 = h
n��p+ 	


�
��−n��p+ 	



·
∫ �

0
d�x
e−��−n��p+	

x dx�
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Our earlier analysis implies that the optimal regime
is one where the delays are extremely small. This sug-
gests that it is the behavior of the delay function in
the vicinity of zero that is crucial in determining the
asymptotic behavior. The following result formalizes
this notion.

Proposition 5. If d�x
/xr → C ∈ �0��
 as x → 0 for
some r > 0, then under the optimal solution, the system
operates in r/�r + 1
-heavy traffic.

This result implies that if d�x
 ≈ x in the vicinity
of zero, we obtain 1/2-heavy traffic. This immediately
translates into a condition on the derivative of the
delay function at zero.

Corollary 1. Under the optimal solution, the system
operates in 1/2-heavy traffic if and only if 0< d′�0
 <�.

To better understand the above results, we present
a few examples. If d�x
 = xr + xt for some t > r , the
behavior of the delay function in the vicinity of zero
will be dominated by xr , and hence the optimal oper-
ating regime will be r/�r + 1
-heavy traffic. If d�x
 =
log�1+x
, we have d�x
≈ x for x near zero or, in other
words d′�0
= 1, and we obtain the optimal regime as
1/2-heavy traffic. In the case that d�x
/xr → 0 or � as
x → 0 for all r > 0, we can only determine that 1− �%

n

cannot significantly differ from ��n−r̃/�r̃+1

 for some
r̃ > 0.
This section was devoted to analyzing the firm’s

joint optimization problem on price and capacity.
There might be cases where a firm may not have both
these levers available to optimize. Our results extend
to these settings as well, and this is the subject of the
next two sections. In §4, we study the case where the
capacity is exogenously fixed, and the system man-
ager optimizes on the price. In §5, we consider the
case of exogenous prices, where the single decision
variable is the capacity.

4. Pricing with Exogenous Capacity
Growth: Illustrating When Heavy
Traffic May Not Be Achieved

In this section, our goal is to analyze how a firm
may exploit scale when the capacity level is exoge-
nously determined or, more precisely, when the ratio
of capacity to market size is fixed. So, the only deci-
sion variable is the price. A by-product of this analysis

will be the fact that heavy traffic need not always be
realized in this setting. In fact, an elasticity property
of the demand function will be essential for heavy
traffic to be optimal. Interestingly, flexibility on capac-
ity choice makes this issue of elasticity moot in the
general case.
The system manager’s objective in this setting is to

maximize the revenue, given by np��p + hƐW r
, by
setting the appropriate price. The system capacity, or
the service rate, is not a decision variable, and scales
with the market size as n�̂, where �̂ > 0 is fixed. The
manager’s optimization problem can be stated as

max
p≥0

np��p+ 	


s.t. �̂ > ��p+ 	


	 = h
��p+ 	


�̂
n−r " �r + 1


��̂−��p+ 	

r
�

(11)

As the capacity level is predetermined, the behav-
ior of the system will depend on the properties of the
demand function, for example, whether it is elastic or
not. To better understand this, let us for now disre-
gard any variability in the model. In other words, let
us consider the following version of (11) that ignores
delay costs:

n
[
max
p≥0

p��p

]

s.t. �̂≥��p
�

(12)

Note that this problem follows from (11) by set-
ting 	 = 0. Before discussing solutions to this prob-
lem, we define demand elasticity. The elasticity of a
demand function � at a price p is given by e�p
 =
−�-��p
/�-p

�p/���p


. A demand function is said
to be elastic on an interval &a� b' if e�p
 > 1 on &a� b'.
Elasticity of a demand function implies that the cor-
responding revenue increases as the price is lowered.
For such a demand function, the optimal solution
to (12) will set the price as low as possible, which
will imply that the constraint �̂ ≥ ��p
 will hold
with equality. Thus, the optimal solution will be p% =
�−1��̂
. Such a demand function leads the system to
a heavily loaded condition. Now, consider the case
when the demand function is not elastic. Here, it may
be the case that the optimal solution to (12) is such
that ��p%
 < �̂, and hence the system is loaded lightly.
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This analysis suggests that when dealing with a pric-
ing problem, the elasticity of the demand curve dic-
tates the behavior of the system.
We now make this informal reasoning rigorous. As

in §3, we will rewrite (11) as a problem of selecting
the optimal arrival rate instead of the optimal price
to obtain the following equivalent problem:

max
0≤�̂<�̂

$n��̂
≡ n

[(
�−1��̂
−hn−r �̂

�̂

"�r + 1

��̂− �̂
r

)
�̂

]
� (13)

Let $%
n and �̂%

n denote the optimal objective func-
tion and any optimizer of (13), respectively. Then, the
optimal price p%

n =�−1��̂%
n
−h��̂%

n/�̂
n−r �"�r + 1
/��̂−
�̂%

n

r 
. The corresponding analog of (12) is given by

max
0≤�̄≤�̂

�$��̄
≡�−1��̄
�̄� (14)

Let $%
� and �̂%

� denote the optimal objective function
and any optimizer of problem (14), respectively. Then,
either �̂%

� = �̂ or �̂%
� < �̂. The former case corresponds

to a critical match between capacity and arrival rate,
whereas the latter corresponds to a capacity surplus.
For an infinitely differentiable function f � �→�, we
use the notation f �i
 to denote its ith derivative with
the convention that f �0
�·
 ≡ 0. Define j ≡ argmax1l:
�$�i
��̂%

�
 = 0∀ i < l2. Assuming for convenience that
� is infinitely differentiable, we obtain the following
result. (See Lemma 1 in the appendix for the general
version.)

Proposition 6. For r ≥ 1, when (14) has a unique
solution, we have the following.
1. If �̂%

� = �̂:
(a) Under the optimal solution, the system operates

in r/�r + j
-heavy traffic.
(b) We have $%

n = n&$%
� −��n−rj/�r+j

'.

(c) The prescription �̂
p
n = �̂− �h"�r + 1
�j − 1
!r�̂/

�−1
j−1�$�j
��̂

1/�r+j
n−r/�r+j
 has a negligible tolerance.
In particular, the optimal solution �̂%

n = �̂
p
n + o�n−r/�r+j

.

Furthermore, $n��̂
p
n
=$%

n + o�n1−�rj/�r+j


.
2. If �̂%

� < �̂, it is not optimal to operate in heavy traffic.

Thus, it is optimal to approach heavy traffic only if
the demand function is elastic in the vicinity of p% =
�−1��̂
. Note that when the system does approach
heavy traffic, as the deterministic profit function

�̂�−1��̂
 gets “flatter” around its maxima �̂%
� (as cap-

tured by an increase in the number of its deriva-
tives being equal to zero at that point), �%

n approaches
heavy traffic more slowly, and the solution $%

n gets
closer to the deterministic upper bound n$%

�. Intu-
itively, this makes sense. When �̂�−1��̂
 is nearly con-
stant in the vicinity of the maxima, it allows one
to choose smaller arrival rates to reduce the delay
costs, while not affecting the revenue component of
the objective function significantly.
We next consider the complementary case where

the arrival rate is exogenously fixed and only the
capacity can be chosen by the firm. This scenario is
equivalent to the case where prices are fixed.

5. Capacity Sizing at Fixed Demand:
Minimizing Delay Costs

In this section, we set aside pricing considerations
by fixing the demand level exogenously, that is, we
assume that customers arrive at a fixed rate n�̂. This
case serves to complete the analysis for settings with
only one decision variable. In the absence of pric-
ing, the firm’s objective is to select a capacity level
to minimize the total delay costs experienced by the
customers and the cost of capacity. The optimization
problem is

min
�>n�̂

$n��
≡ n�̂	 +��

s.t. 	 = h
n�̂

�

"�r + 1

��−n�̂
r

�

(15)

Such a problem is studied for a many-server con-
figuration in Borst et al. (2004). Using the first-order
conditions that the optimal solutions must satisfy, we
obtain the following characterization.

Proposition 7. For r ≥ 1:
1. Under any solution of (15), the system operates in

r/�r + 1
-heavy traffic.
2. The prescription �

p
n = n&�̂ + �hr�̂"�r + 1
/�
1/�r+1


·n−r/�r+1
' has a negligible tolerance. In particular, the opti-
mal capacity �%

n =�
p
n+o�n1/�r+1

. Furthermore, $n��

p
n
=

$n��
%
n
+ o�n1/�r+1

.

Part (a) of the result states that the optimal oper-
ating regime is r/�r + 1
-heavy traffic. Part (b) of the
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result characterizes a prescription that is near-optimal
in the sense that the prescription as well as the cost
generated by using the prescription are both within a
negligible tolerance of the optimal values. This toler-
ance is of the order o�n1/�r+1

.
As we will note in the next section, for strictly

convex costs (r > 1), the single- and many-server
configurations have identical solutions. Thus, Propo-
sition 7 will apply to many-server configurations as
well, and is consistent with the observations in Borst
et al. (2004).

6. Many-Server Configuration:
Asymptotic Equivalence to
Single-Server Configuration for
Strictly Convex Delay Costs �r > 1


We now turn our attention to the many-server config-
uration. Here, the firm deploys a number of servers
denoted by s, each working at a fixed rate �, to max-
imize profits. We will focus on the joint pricing and
capacity sizing problem; results for the other settings
follow similarly. We use the same notation as before
with the exception that � now denotes the cost per
server deployed. We fix r > 1, i.e., strictly convex
delay costs in the set of delay costs we consider. The
manager’s optimization problem here is given by

max
p� s≥0� s∈�+

pn��p+ 	
−�s

s.t. �s > n��p+ 	
�

	 = h��n��p+ 	
� s

"�r + 1


�s�−n��p+ 	

r
�

(16)

where

��n��p+ 	
� s


= �n��p+	
/�
s/�s!�1−�



�n��p+	
/�
s/�s!�1−�

+∑s−1
k=0��n��p+	
/�
k/k!
 �

(17)

and � = n��p + 	
/�s�
 < 1 is the traffic intensity.
Note that to compute the delay cost, we use the fact
that the steady-state delay distribution ��W > t
 =
��n��p + 	
� s
e−�s�−n��p+	

t , t ≥ 0 (see, for example,
Chan and Lin 2003, Equation (13)).

An equivalent formulation in terms of maximizing
over the arrival rate and scaling the arrival rate and
number of servers by n analogous to (6) is

n

[
max

�̂≥0� ŝ∈1x� �x>�̂�nx∈�+2

(
�−1��̂
−h��n�̂�nŝ
n−r

· "�r + 1

�ŝ�− �̂
r

)
�̂−�ŝ

]
� (18)

Let $%
n and ��̂%

n� ŝ%
n
 denote the optimal objective func-

tion and any optimizer of (18), and $%
� and ��̂%

�� ŝ%
�


denote the solution and any optimizer of the ideal-
ized system max�̄≥0� s̄≥�̄/� �−1��̄
�̄−�s̄, respectively. As
before, we assume that 0< �̂%

� < �. Then, we obtain
the following result.

Proposition 8. For r > 1:
1. Under any solution of (18), the system operates in

r/�r + 1
-heavy traffic.
2. The optimal profit is given by

$%
n = n&$%

� −��n−r/�r+1

'�

3. Fix an ) ∈� arbitrarily and let

*%
m = �hr�̂%

�"�r + 1
�/�
1/�r+1
�

Then, the prescription �̂%
� + )n−r/�r+1
,

1
�

[
�̂%
� + &)+*%

m'n−r/�r+1
]
is optimal up to a negligible tolerance. To be specific, it
yields a profit that is within o�n1/�r+1

 of the optimal solu-
tion to (18).

This result is identical to that for the single-server
configuration (Propositions 1 and 2). The equivalence
between single- and many-server configurations in
r/�r + 1
-heavy traffic goes beyond that indicated by
this result. A straightforward calculation yields that
the distributions of the steady-state delay in these sys-
tems are in fact identical up to a negligible tolerance.
For the case r = 1, the prescription for the many-

server configuration is indeed different from the
single-server configuration. This analysis is similar
to that in Maglaras and Zeevi (2003, §4). Though
the authors consider a slightly different version of
the many-server configuration, where the capacity is
shared between customers if their number exceeds the
number of servers, their results can easily be applied
to our setting. For brevity, we omit details.
In conclusion, we would like to point out that this

equivalence breaks down for strictly concave costs.
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The optimal operating regime in the many-server con-
figuration for these costs when operating under the
FCFS policy is, as expected, lighter than 1/2-heavy
traffic. However, this implies that the behavior of
the multiserver queue approaches that of an infinite-
server queue rapidly, making the economical regime
one that is only slightly lighter than 1/2-heavy traffic.
In fact, it is heavier that �1/2− )
-heavy traffic for all
) > 0. Unfortunately, we cannot analyze the optimal
operating regime under the LCFS policy because the
multiserver system does not have, to the best of our
knowledge, a closed-form expression for the delay
distribution.

7. Discussion
This paper studies a profit maximization problem in
a large system setting. In particular, the system man-
ager selects the capacity level and the price to be
offered to a stream of price and delay sensitive cus-
tomers. This paper deals with two configurations: sin-
gle server, where the capacity is manifested in the
service rate, and many servers, where the capacity
is deployed in terms of the number of servers, each
working at a fixed rate. We demonstrate that the opti-
mal solution leads the system into a heavy traffic
regime with utilization near 100%. The rate at which
the utilization approaches 100% (with respect to the
system size) depends on the form of the delay cost.
In particular, for strictly convex costs (that have a zero
derivative at the origin), the utilization approaches
100% at a rate faster than the conventional O�1/

√
n
,

and hence places the system in what is referred to as
an efficiency driven regime (see Gans et al. 2003 for
a discussion of the efficiency driven regime). In this
regime, the single- and many-server configurations
behave identically, and thus there is an easier method
of approximating solutions for the typically difficult
many-server settings. In the case of concave delay
costs, we obtain similar results for the FCFS rule.
However, in a single-server setting for the delay min-
imizing LCFS policy, we obtain 1/2-heavy traffic as
the optimal regime. Thus, the nature of heavy traffic
realized depends on the scheduling policy in addition
to the cost structure. This suggests caution should be
exercised when constructing optimal scheduling poli-
cies using an “assumed” heavy traffic regime.

The goal of this paper is to study the impact of
the delay cost structure on the firm’s pricing and
capacity investment strategies in light of increasing
market size. To facilitate this analysis, and to make
explicit this interaction, we have made some simpli-
fying assumptions as follows:
1. Exponential assumptions. This paper restricts at-

tention to exponential interarrival and service times
for customers. These assumptions are primarily for
simplicity. For the single-server configuration, if there
is no knowledge of service times and customers are
processed in an FCFS fashion, our results remain
for the case of general renewal arrivals and general
services because asymptotically the delay distribu-
tion retains a similar structure. The extension for the
many-server configuration is not as straightforward.
Though the results are robust to general interarrival
distributions, the case of general service distributions
cannot be handled, primarily due to the lack of an
accurate estimate of the delay distribution in this set-
ting. We direct the reader to Whitt (1993) for a discus-
sion of the approximation methods for the GI/G/m

queue.
2. Linear capacity costs. This paper assumes that the

capacity cost is linear in the amount of capacity
deployed. Such a cost structure is commonly used
in the literature. (An exception is Borst et al. (2004),
which studies a cost minimization problem in a many-
server configuration for convex capacity costs.) For
general capacity costs, the structure of these costs will
also impact the optimal operating regime, in addition
to the delay costs. In particular, fixing the structure
of the delay costs, if there are economies of scale in
acquiring capacity, then additional units of capacity
will be cheaper, and it will be optimal to invest in
higher levels of capacity. Thus, the optimal regime
will be lighter than that suggested by the analysis for
linear costs. Analogously, for diseconomies of scale,
the optimal regime will be heavier than the linear cost
case. The exact form of the capacity costs can be used
to explicitly characterize the optimal regime.
3. Additive demand functions. This paper considers

customer demand functions of the form ��p+ 	
, i.e.,
the customer disutility is additive in price and delay
cost. This choice permits a natural separation of the
price and delay cost, and an easy characterization of
near-optimal prescriptions. One can envisage using
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general demand functions ��p�	
. As an illustration,
consider the case ��p�	
 = �1 − p
�1 − 	
. This is a
multiplicative demand function that can be rewritten
as ��p�	
= 1−p− �1−p
	. Considering the case with
capacity cost � < 1, analogous to the additive demand
case, we note that as the market size increases, the
delays become negligible, and the firm’s optimal price
is bounded away from 1 (in fact, the idealized price
ignoring delay costs equals �1+�
/2). Thus, the opti-
mal regime for this demand function will be the same
as that for the additive demand function �̂�p� 	
 =
1− p− k	 for some appropriate constant k > 0. In this
example, we are able to reduce the demand func-
tion to the case of an additive function. This may not
be possible in general. However, the optimal regime
can still be computed using the approach followed
in this paper. We leave a detailed analysis for future
research.
4. Exact service times are not known. If the system

manager has knowledge of the customers’ exact
service times, then one expects policies such as
shortest remaining processing time (SRPT) to outper-
form FCFS for convex delay costs (see, for exam-
ple, Schrage and Miller 1966). By employing such a
policy, the delay costs in the system can be further
reduced, and a bounding argument yields that the
optimal regime will be heavier than r/�r + 1
-heavy
traffic and will generate higher profits compared to
the FCFS case. However, in the case where the cus-
tomers’ service times are bounded above, the delay
costs under SRPT are of the same order as that under
FCFS in heavy traffic. This result is obvious in the
deterministic case, and for the general case, it follows
by applying Jensen’s inequality to the result in Wier-
man (2007, Theorem 3.16) that proves this relation for
the first moment of delays. Hence, in this setting, the
optimal operating regime will remain r/�r + 1
-heavy
traffic.
5. Focus on time in queue. This paper considers the

delay incurred by customers during their wait for
service. One can envisage considering the sojourn
time instead. For the single-server configuration, our
results remain the same because, in the optimal
regime, the time spent in service will be of a smaller
order than the delay in queue. For the many-server
configuration, the distribution of the time spent in
service remains unchanged, and the delay in queue

diminishes with scale. In this case, with convex delay
costs, using a Taylor series argument, one recovers the
optimality of conventional 1/2-heavy traffic.

Appendix. Proofs of Results
Proof of Proposition 1. We will use the notation

gn����
 ≡ ��−1��
 − h��/�
n−r �"�r + 1
/�� − �
r 

� − ��,
and �$��
 ≡ �−1��
�. The optimal solution to (6), ��̂%

n� �̂%
n
,

satisfies the following necessary first-order conditions:

�$′��̂%
n
= hn−r �̂%

n

�̂%
n

"�r + 1

��̂%

n − �̂%
n


r

(
2+ r

�̂%
n

�̂%
n − �̂%

n

)
� (19)

�= hn−r �̂%2
n

�̂%
n

"�r + 1

��̂%

n − �̂%
n


r

(
r

��̂%
n − �̂%

n

+ 1

�̂%
n

)
� (20)

We now use the fact that all cluster points of ��̂%
n� �̂%

n
 must
be a solution of (7). Thus, we can write �̂%

n = �̂%
n − )n, where

)n → 0, and we can rewrite (20) as

�= hn−r �̂%2
n

�̂%
n

"�r + 1
)−r
n

(
r)−1n + 1

�̂%
n

)
�

Using the fact that all solutions to (7) are strictly pos-
itive and finite, we obtain C1 ≤ lim infn→� n−r )

−�r+1

n ≤

lim supn→� n−r )
−�r+1

n ≤ C2 for finite constants C1�C2 > 0,

which implies that �%
n = 1−��n−r/�r+1

.

We now turn to the optimal objective function. Using the
Taylor series expansion of �$��
 = �−1��
� around �$��̂%

�
,
we can write

$%
n

n
≥ gn��̂

%
� −n−r/�r+1
� �̂%

�


= $%
� −n−r/�r+1
�$′�8n
−C1n

−r/�r+1
�̂%
�� (21)

where 8n ∈ &�̂%
� − n−r/�r+1
� �̂%

�' and C1 > 0 is a constant. We
also have

$%
n

n
= �$��̂%

n
−��̂%
n −hn−r �̂%

n

�̂%
n

"�r + 1

��̂%

n − �̂%
n


r
�̂%

n

�a
≤ �$��̂%
n
−��̂%

n −C2n
−r/�r+1
�̂%

n

≤ $%
� −C2n

−r/�r+1
�̂%
n� (22)

where C2 > 0 is a constant and (a) follows by noting that
�̂%

n > �̂%
n and �%

n = 1−��n−r/�r+1

. Combining (21) and (22),
the result follows. �

Proof of Proposition 3. This is identical to the proof of
Proposition 1 and is omitted. �

Proof of Proposition 4. For a fixed arrival rate �
and service rate �, applying Corollary 9.3 in Chapter III
of Asmussen (2003), the steady-state delay distribution is
given by

��W > t
= �−√
�
∫ t

0

1
y

e−��+�
yI1�2y
√

��
dy� (23)
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where I1�x
 = ∑�
k=0�x/2
2k+1/�k!�k + 1
!
 denotes the Bessel

function. Using this distribution, we can compute

ƐW r = �

��+�
r+1
"�r+1
2F1

(
r+1
2

�
r+2
2

:2:
4��

��+�
2

)
� (24)

where 2F1 is Gauss’s hypergeometric function given by
2F1�a� b: c: z
 = ∑�

m=0�a
m�b
m/�c
m
�zm/m!
, where �y
m =∏m−1
k=0 �y+ k
 for m > 0 and �y
0 = 1.
We now turn to the optimization problem (10). We use

the notation �$��
=�−1��
� and

gn����


=
[
�−1��
−hn−r �

��+�
r+1 "�r+1
2F1
r+1
2

�
r+2
2

:2:
4��

��+�
2

]
�

−���

Then, (10) is equivalent to max�̂� �̂≥0� �̂<�̂ ngn��̂� �̂
. Any
optimizer ��̂%

n� �̂%
n
 must satisfy the first-order condition

-gn��̂
%
n� �̂%

n
/�-�
= �. This is equivalent to

2��̂%
n + �̂%

n

2
2F1

(
1+ r

2
�
2+ r

2
: 2:

4�̂%
n�̂

%
n

��̂%
n + �̂%

n

2

)

+ �2+ r
�̂%
n��̂

%
n − �̂%

n
2F1

(
3+ r

2
�
4+ r

2
: 3:

4�̂%
n�̂

%
n

��̂%
n + �̂%

n

2

)

= nr 2��̂
%
n + �̂%

n

r+4�

�1+ r
�̂%
n"�1+ r


� (25)

As in the proof of Proposition 1, we can write �̂%
n = �̂%

n − )n,
where )n → 0 as n →�. Combining this with the fact that
limz→1�1 − z
a+b−c

2 F1�a� b: c: z
 = "�c
"�a + b − c
/�"�a
"�b


for a+ b > c and noting that 1− 4�̂%

n�̂
%
n/��̂

%
n + �̂%

n

2 = ��)2n
,

we obtain

2F1

(
3+ r

2
�
4+ r

2
:3:

4�̂%
n�̂

%
n

��̂%
n + �̂%

n

2

)
=��)−�1+2r


n 
 for 0< r < 1�

2F1

(
1+ r

2
�
2+ r

2
:2:

4�̂%
n�̂

%
n

��̂%
n + �̂%

n

2

)

=��)�1−2r

n 
 for

1
2

< r < 1�

≤��)−(
n 
 for 0≤ r ≤ 1

2
and any ( > 0�

Using the above relations in (25), we obtain �%
n = 1 −

��n−�1/2

. �

Proof of Proposition 5. The proof is similar to that of
Proposition 1, and we provide only a sketch. Using the fact
that d�x
/xr →C as x → 0, we have that for any ) > 0, there
exists ( > 0 such that �d�x
/xr −C�< ) for x < (. We use this
relation to derive bounds on the delay cost. For an M/M/1

queue with arrival rate n�̂n and service rate n�̂n for some
0< �̂n < �̂n, we can write the delay cost as

Ɛd�Wn
 = �nn�̂n�1−�n

∫ �

0
d�x
e−n�̂n�1−�n
x dx

= �nn�̂n�1−�n

∫ (

0
d�x
e−n�̂n�1−�n
x dx

+�nn�̂n�1−�n

∫ �

(
d�x
e−n�̂n�1−�n
x dx

�a
= �n,
∫ (n�̂n�1−�n
/,

0
d

(
,y

n�̂n�1−�n


)
e−,y dy

+�nn�̂n�1−�n
e
−n�̂n�1−�n
(

·
∫ �

(
d�x
e−n�̂n�1−�n
�x−(
 dz� (26)

where �a
 follows by the substitution y = n�̂n�1−�n
x/, .
Noting that �d�x
/xr −C�<) for x<(,

∫ �
0 d�x
e−,xdx<�,

and that under the optimal solution we must have

liminf
n→� n�̂n�1−�n
=�� 0< liminf

n→� �̂n≤ limsup
n→�

�̂n <��

and limn→� �n = 1, we obtain, for n sufficiently large,
Ɛd�Wn
=��n−r �1−�n


−r 
. The rest of the proof proceeds by
a bounding argument analogous to that used in the proof
of Proposition 1. �

Proof of Proposition 6. We will prove the following
general result (that assumes � is only k ≥ 1 times continu-
ously differentiable) that subsumes Proposition 6.

Lemma 1. When (14) has a unique solution, for

j = argmax1l� �$�l
 exists� �$�i
��̂%
�
= 0∀ i < l2�

we have the following.
1. Case �̂%

� = �̂:
(a) If �$�j
��̂%

�
 �= 0, we have �%
n = 1−��n−r/�r+j

 and $%

n =
n$%

� −��n1−�rj/�r+j


. Furthermore, the prescription

�̂
p
n = �̂−

(
h"�r + 1
�j − 1
!r�̂

�−1
j−1�$�j
��̂


)1/�r+j


n−r/�r+j


has a negligible tolerance in the sense that �̂%
n = �̂

p
n + o�n−r/�r+j



and $n��̂
p
n
=$%

n + o�n1−rj/�r+j

�
(b) Otherwise, we have �%

n = 1 − n−r/�r+k
u�n
 for some
function u�n
 ≥ 0 such that u�n
 → � and u�n
 = o�nr/�r+k

,
and n�$%

� − K1n
−rk/�r+k
u�n
−r − K2n

−rk/�r+k
u�n
kv�n
−1
 ≤
$%

n ≤ n�$%
� − K3n

−rk/�r+k
u�n
−r 
 for some function v�n
 such
that v�n
→� and finite constants K1�K2�K3 with K1�K3 > 0.

2. Case �̂%
� < �̂:

(a) If �$�j
��̂%
�
 �= 0, we have �%

n = �̂%
�/�̂−��n−r/�j−1

 and

$%
n = n$%

� −��n1−r 
. Furthermore, the prescription

�̂p
n= �̂%

�−
(

�j−1
!h"�r+1
�̂%
��2+r��̂%

�/��̂−�̂%
�




�̂��̂−�̂%�
r �−1
j−1�$�j
��̂%�


)1/�j−1

n−r/�j−1


has a negligible tolerance in the sense that �̂%
n = �̂

p
n + o�n−r/�j−1



and $n��̂
p
n
=$%

n + o�n1−r 
�
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(b) Otherwise, we have �%
n = ��̂%

�/�̂
 − n−r/�k−1
u�n
 for
some function u�n
 such that �u�n
�→� and u�n
= o�nr/�k−1

,
n�$%

� − K1n
−r − K2n

−rk/�k−1
u�n
kv�n
−1
 ≤ $%
n ≤ n�$%

� −
K3n

−r 
 for some function v�n
 such that v�n
 → � and finite
constants K1�K2�K3 with K1�K3 > 0. �

Proof. Consider the case �̂%
� = �̂. We first prove the

results for the optimal traffic intensity before moving on
to the optimal objective function. Note that the optimal
solution �̂%

n satisfies the following necessary first-order
condition:

�$�1
��̂%
n
−hn−r �̂%

n

�̂

"�r + 1

��̂− �̂%

n

r

(
2+ r

�̂%
n

�̂− �̂%
n

)
= 0� (27)

It is easy to see that we must have �̂%
n → �̂%

�. Thus, we
can write �̂%

n = �̂%
� − )n = �̂− )n, where )n > 0 and )n → 0 as

n→�. Substituting this relation in (27), we obtain

�$�1
��̂−)n
=hn−r

(
1− )n

�̂

)
"�r+1
)−r

n ��2−r
+r�̂)−1n 
� (28)

Using the definition of j , we apply the Taylor series expan-
sion to �$�1
 about �̂ in (28) to obtain

�$�j
�8n


�j − 1
! �−)n

j−1

= hn−r

(
1− )n

�̂

)
"�r + 1
)−r

n ��2− r
+ r�̂)−1n 
� (29)

where 8n ∈ &�̂− )n� �̂'. Dividing both sides by )
j−1
n and tak-

ing the limit as n→� on both sides, we obtain

lim
n→�n−r )

−�r+j

n = �−1
j−1�$�j
��̂


h"�r + 1
�j − 1
!r�̂ � (30)

Thus, if �$�j
��̂
 �= 0, we obtain the optimal traffic inten-
sity �%

n = 1 − ��n−r/�r+j

. If �$�j
��̂
 = 0, we must have
j = k, and thus limn→� n−r )

−�r+k

n = 0, which gives us �%

n =
1 − n−r/�r+k
u�n
 for some function u�n
 ≥ 0 such that
u�n
→� and u�n
= o�nr/�r+k

.
We now turn to the optimal objective function. Using

�̂%
n = �̂%

� − )n, the following relation holds:

n

(
�$��̂%

n
−hn−r "�r + 1

(
1− )n

�̂

)
)−r

n �̂%
n

)

=$%
n ≤ n

(
$%

� −hn−r "�r + 1

(
1− )n

�̂

)
)−r

n �̂%
n

)
� (31)

The result now follows for each case by using the corre-
sponding limiting relation for )n and writing out the Taylor
expansion around �$��̂%

�
. The properties of the presented
prescription follow from (30) and by performing a calcula-
tion analogous to that above for the objective function.
We now consider the case �̂%

� < �̂. As before, we set �̂%
n =

�̂%
�−)n, where )n �= 0 and )n → 0 as n→�. Note that )n can

now take negative values as well. We obtain the following
analog of (28):

�$�1
��̂%
�−)n
=hn−r �̂%

�−)n

�̂

"�r+1

��̂−�̂%�+)n


r

(
2+r

�̂%
�−)n

�̂−�̂%�+)n

)
�

Using the Taylor series expansion around �̂%
�, we obtain the

following analog to (29):

�$�j
�8n


�j − 1
! �−)n

j−1

= h
n−r "�r + 1
��̂%

� − )n


�̂��̂− �̂%�
r

[
1− r)n

�̂− �̂%�
+ o�)n


]

×
(
2+ r

�̂%
�

�̂− �̂%�
− r

�̂− �̂%�

(
1+ �̂%

�
�̂− �̂%�

)
)n + o�)n


)
�

where 8n ∈ &�̂%
� − )n� �̂%

�' for )n > 0 and 8n ∈ &�̂%
�� �̂%

� − )n' for
)n < 0. Dividing both sides by )

j−1
n and letting n →�, we

obtain

lim
n→�n−r )

−�j−1

n = �̂��̂− �̂%

�
r �−1
j−1�$�j
��̂%
�


�j − 1
!h"�r + 1
�̂%��2+ r��̂%�/��̂− �̂%�



�

and the rest of the argument follows as before. �

Proof of Proposition 7. Let �%
n denote a solution to (15).

Then, it must satisfy the following the first-order optimality
condition:

h
n2�̂2"�r + 1

�%

n��
%
n −n�̂
r

(
1
�%

n

+ r

�%
n −n�̂

)
= �� (32)

It is easy to see that we must have �%
n/n→ �̂. Thus, we can

write �%
n = n�̂+ n)n, where )n → 0 as n →�. Using this in

the above equation, we obtain

h�̂"�r + 1
 �̂

�̂+ )n

n−r )−r
n

(
1

�̂+ )n

+ r

)n

)
= ��

Thus, we must have nr)
�r+1

n → h�̂"�r + 1
r/� as n → �,

and we obtain �%
n = n�̂ + �h�̂"�r + 1
r/�
1/�r+1
n1/�r+1
 +

o�n1/�r+1

. The result for the cost follows by a straightfor-
ward calculation. �

Proof of Proposition 8. To prove this result one can
use the first-order necessary conditions for optimality anal-
ogous to the proof of Proposition 1. However, this approach
requires calculating derivatives of the function ��·� ·
, which
is fairly tedious. Instead we use a simpler bounding
approach to prove the result. It is easy to see that all
cluster points of the sequence ��%

n� s%
n
 must be solutions

to max�≥0� s≥��/�

�$��
 − �s. Noting that any solution to

max�≥0� s≥��/�

�$��
−�s must satisfy the first-order optimal-

ity condition �$′��̂%
�
= �/� > 0, and using the continuity of

�$′, we have
lim
n→�

�$′��%
n
=

�

�
� (33)
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Using this, analogous to (21), we obtain the bound

$%
n

n
≥$%

� −C1n
−r/�r+1
 (34)

for some finite constant C1 > 0. We also have the bound

$%
n

n
= �$��̂%

n
−�ŝ%
n−h��n�̂%

n�nŝ%
n
n

−r "�r+1

ŝ%
n��1−�%

n

r
�̂%

n

= �$��̂%
n
−�

�̂%
n

�
−�ŝ%

n�1−�%
n


−h��n�̂%
n�nŝ%

n
n
−r "�r+1


ŝ%
n��1−�%

n

r
�̂%

n

≤ $%
�−C2�1−�%

n
−C3��n�̂%
n�nŝ%

n
n
−r 1

�1−�%
n


r
� (35)

for some finite constants C2�C3 > 0, where we use the fact
that lim infn→� �%

n > 0, �̂%
n < �ŝ%

n <�.
If along some sequence denoted by ñ we have ñr/�r+1
 ·

�1−�%
ñ
 → � as ñ → �, then for large ñ we must have

C1ñ
−r/�r+1
 < C2�1 − �%

ñ
 and the bound in (35) contradicts
that in (34). Similarly, we cannot have ñr/�r+1
�1 − �%

ñ
 →
0 as ñ → � because this would give us

√
ñ�1 − �%

ñ
 → 0,
which by the standard results of Halfin and Whitt (1981, p.
575) implies ��ñ�̂%

ñ� nŝ%
ñ
 → 1, and we again obtain a con-

tradiction between (34) and (35). Thus, we must have �%
n =

1−��n−r/�r+1

 and $%
n = n&$%

� −��n−r/�r+1

'.
Part (3) follows by a Taylor series argument analogous to

that for the single server configuration in §3.1, along with
the fact that for r > 1, we have

√
n�1− �%

n
 → 0, and thus
��n�̂%

n�nŝ%
n
→ 1. �
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